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Balancing autonomy and expertise in 
autonomous synthesis laboratories

Xiaozhao Liu, Bin Ouyang & Yan Zeng

Autonomous synthesis laboratories promise 
to streamline the plan–make–measure–
analyze iteration loop. Here, we comment 
on the barriers in the field, the promise of a 
human on-the-loop approach, and strategies 
for optimizing accessibility, accuracy, and 
efficiency of autonomous laboratories.

Motivations of autonomous laboratories
An autonomous laboratory is a system that leverages data, computa-
tion, expert knowledge, and artificial intelligence (AI) to predict and 
interpret experimental outcomes generated from an automated robotic 
platform. Once a research objective is set, an autonomous laboratory 
is expected to plan, execute, and iterate with minimal human interven-
tion1. Autonomous laboratories hold substantial potential to accelerate 
research and have recently drawn particular attention in chemical and 
materials synthesis. These systems aim at making high-performance 
molecules or materials that meet the demands of advanced technolo-
gies, areas where computational design has set a substantially faster 
rate of progress2. The advantages of such an approach include increased 
throughput, improved reproducibility and replicability, standardized 
data management, self-learning capability, and a faster turnaround 
due to streamlining the iterative plan–make–measure–analyze loop.

Barriers faced by autonomous laboratories
To date, notable barriers still hinder the broader development and 
implementation of autonomous laboratories. Common challenges 
include sourcing off-the-shelf instruments, building customized instru-
ments and tools from scratch, integrating multiple types of analytical 
instruments with various functionalities, handling special conditions 
such as high temperature and controlled atmosphere, interpreting 
complicated analytical results, and predicting synthesis outcomes 
when there is a lack of mechanistic understanding3. The last point is 
especially true for inorganic predictive synthesis compared to organic 
retrosynthetic analysis. The complexity and large capital requirement 
for building and maintaining an autonomous laboratory depends on the 
research scope, as a wide variety of materials, processes, and methods 
may be involved. These challenges might be partially solved by adopting 
semi-automation with certain manual intervention4 or by implement-
ing flexible and modular automation designs5.

In order to effectively manage resources and data, monitor status, 
and control their operations, a sophisticated and robust workflow 
management software combined with programmable logic controllers 
and microcontrollers are required. This software orchestrates samples, 
equipment, robots, experiments, and data throughout the stages 
of planning, execution, and updating in an autonomous workflow. 

Notable examples include AlabOS6 implemented in the A-Lab2 and Che-
mOS 2.07. However, the current workflows still face challenges related 
to increased throughput and greater complexity when integrating a 
large variety of devices in autonomous laboratories. Conflicts may 
arise when handling multiple tasks and devices simultaneously. This 
presents a substantial challenge, as it is also desired for these systems 
to go beyond basic functions and integrate advanced capabilities such 
as error detection, error reporting, error handling, recalibration, and 
ideally, the ability to reconfigure workflows and even equipment to 
adapt to the dynamic nature of research goals and environments. 
Error handling and workflow reconfigurations heavily rely on domain 
knowledge and the researcher’s experience, which hinders the imple-
mentation of these advanced functions in an autonomous laboratory in 
the early stage of development. The efficiency of the central workflow 
management software also relies on the computation and AI’s capabili-
ties for rapid data processing, analysis, and decision making.

The accuracy and reliability of AI-driven data interpretation and 
the subsequent decision-making have raised concerns due to the 
trade-off between efficiency and quality and the impact of biases. These 
biases may originate from imperfect or inappropriate data sources, 
including biased sampling, measurements, labeling, and annotations. 
Additionally, human experts might perpetuate these biases by using 
the biased outputs from the AI models to further refine them. This 
cycle of biased-data-in and biased-data-out can ultimately worsen the 
accuracies and consistencies in autonomous laboratories8. Therefore, a 
well-designed strategy for human intervention in the process is critical 
to mitigating these biases, thereby enhancing accuracy, trustworthi-
ness, and overall efficiency.

A human on-the-loop strategy
Although a ‘human-out-of-the-loop’ (fully autonomous) approach is 
being pursued in many autonomous research efforts, it may be imprac-
tical for most scientific fields and research groups due to the previously 
noted barriers and limitations. Human involvement in autonomous 
laboratories is not necessarily a disadvantage and should not be 
thought of as such. When strategically integrated, this involvement 
can enhance both the implementation and operation of these AI and 
robotics-driven systems. Properly designed human oversight can help 
to overcome many of the current barriers faced by fully autonomous 
systems. While some researchers have considered a ‘human-in-the-loop’ 
workflow that requires continuous human intervention, we propose a 
‘human-on-the-loop’ approach. This approach offers a more effective 
and balanced way to lower the cost while boosting the efficiency of the 
experiment, allowing humans to oversee and intermittently interact 
with the automated processes when requested by the system (Fig. 1).

The human-on-the-loop approach takes advantage of the human’s 
flexibility, adaptability, and expertise to fulfill tasks beyond the cur-
rent capabilities of robots and AI. In addition to human expert quality 
control based on expertise, human experts excel in tasks where robots 
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processing techniques9. Additionally, data generated from autono-
mous laboratories would be particularly useful in further enhancing 
AI accuracy by providing specialized, standardized, and diverse results 
including both ‘successful’ and ‘null’ outcomes10.

For materials characterization, pre-trained ML models with simu-
lated characterization data can efficiently generate usable ML models 
that can be further finetuned with experimental data11. Moreover, 
incorporating multiple characterization data, both structural and com-
positional, can effectively improve the efficiency and accuracy of the 
ML models12. To fully exploit multi-fidelity data, data standardization 
and automated data cleaning workflows are crucial, as they contribute 
to the development of more robust and meaningful ML models. An 
autonomous synthesis laboratory may leverage data across a spectrum 
of fidelity to balance quality, quantity and efficiency. This ranges from 
generic computational datasets, low-cost and fast proxy measurement 
datasets of certain materials characteristics, generic experimental 
datasets, and all the way to specialized, standardized, and carefully 
evaluated datasets.

Another critical area of focus is the customization of the training 
processes to better utilize multi-fidelity data. One emerging proto-
col is to develop foundation models trained on extensive, generic 
datasets13. Finetuning these foundation models using experimental 
data has the potential to reveal the transferability of global models 
to domain-specific science. Additionally, a rising trend is to create 
specialized experimental or computational datasets that encapsulate 
domain-specific knowledge more accurately12,14. Models developed 
using these datasets are better suited for adaptation or fine-tuning 
with data generated for specific research domains.

The integration of human expertise remains indispensable 
for the efficient training of interpretable ML models. For instance, 
human-supervised approaches can enhance the sampling process and 
adapt models into specific research domains. Symbolic ML, an emerg-
ing technique, shows promise in developing phenomenological models 
that more accurately describe data14,15. The adaptation of such methods 
into featurization and sampling processes could prove beneficial. 
When combined with the state-of-the-art active learning algorithms, 
the infusion of interpretable domain knowledge through phenom-
enological theories is likely to greatly enhance both the efficiency of 

and AI may struggle, such as identifying and resolving errors on-the-fly, 
repairing or reconfiguring equipment, maintaining and cleaning 
devices, and handling apparatus/samples that require transporting 
or transferring that is easily performed by humans but more chal-
lenging for robots. Human experts may also be able to make real-time 
decisions based on intuition and expertise and evaluate uncertainties 
and outliers. All these aspects are invaluable in managing and executing 
complex tasks in material synthesis processes.

However, incorporating human oversight and assistance into 
autonomous laboratories without disrupting the workflow still faces 
some potential issues: how to avoid human precognitive bias, how to 
effectively enable the interoperability between human operators and 
robotic systems, how to standardize collaborative environments, 
and how to develop and implement advanced workflow management 
software that allows for seamless and timely augmentation of human 
contributions. By addressing these challenges, we can establish a more 
robust framework for integrating data and algorithms that further 
enhance AI accuracy in autonomous laboratories.

Enhancing the accuracy of AI using improved data and 
algorithms
Real-time data interpretation, insight extraction, and decision-making 
using AI-based models are desired capabilities for autonomous labo-
ratories. However, data scarcity still limits the power of AI models in 
autonomous synthesis laboratories. Proxy or low-resolution data may 
be utilized to streamline the iterative plan–make–measure–analyze 
loop. This approach allows for quick but preliminary insights, which 
are useful to move the exploration forward in early stages.

To achieve a balance between accuracy and efficiency, one promis-
ing direction is to collect and use multi-source, multi-fidelity data to 
train machine learning (ML) models. In the context of materials synthe-
sis, this data can include a range of sources: computationally obtained 
data such as energies, compositions, structures, and properties, as 
well as experimentally obtained data. Incorporating experimental 
data, including both successful and null results, helps to capture the 
complexities and nuances of real-world conditions that purely compu-
tational data often overlooks. Relevant experimental synthesis details 
can be extracted from published literature using natural language 
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Fig. 1 | A schematic demonstration of a ‘human-on-the-loop’ strategy in 
autonomous synthesis laboratories where flexible robots, specialized AI, and 
human experts interact synergistically. This strategy emphasizes strategic 
human supervision with minimal intervention upon request, thereby enhancing 

the AI accuracy while maximizing overall research efficiency. Orange colored 
region represents the cognition part (planning and analysis), and blue represents 
the operation part (synthesis and measurement).
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training processes and the interpretability of final models. However, 
we need to be cautious when incorporating domain expertise into the 
featurization and sampling processes, as not all domain knowledge 
has been thoroughly validated, and this can lead to the introduction 
of biases in AI predictions.

Future perspectives
The augmentation of AI and laboratory automation in the form of 
autonomous laboratories sets a new data-driven high-throughput 
paradigm to advance scientific discovery. Automated experimentation 
is the most controlled, precise, and efficient way to validate the rapid 
predictions from AI and computations. In the meantime, the large 
volume of data generated by automated experiments requires the use 
of AI to quickly, and seamlessly, analyze results and make decisions.

The presence of biases and unsatisfactory accuracy in autono-
mous materials synthesis laboratories urges the need for improve-
ments. Enhancement could be achieved through several approaches: 1) 
improving data quality by obtaining higher quality, better annotations 
by experts, focusing on more specific information, and incorporating 
diverse sources combined with physics-informed data augmentation; 
2) reducing human bias and improving uncertainty quantification 
by strategically involving human intervention; 3) minimizing AI bias 
by appropriately incorporating human supervision that provides 
expert evaluation and data quality control when AI predictions 
lack confidence; and 4) standardizing data creation and making it 
machine-readable and unbiased through automated workflows. More 
specifically, human researchers need to pre-screen the data for various 
ML training purposes based on established phenomenological theo-
ries. Additionally, there should be a fine-tuning interface that allows 
smooth human intervention, enabling real-time monitoring of the 
training process and timely action when bias occur.

To make autonomous laboratories and workflows more accessible 
and practical, several key improvements are necessary. Open-sourcing 
data, software, and hardware is important to lower the barriers and 
costs associated with their adoption and implementation by a broader 
community. Improving the application programming interfaces 
and graphical user interfaces are essential for supporting effective 
‘human-on-the-loop’ human–machine collaboration. Further devel-
opment in synthesis-by-design methodologies is needed so that the 

efficiency and predictability of experiments can be enhanced. Stand-
ardizing programmable instruments can promote compatibility across 
different research domains, enhancing the ease of use and facilitating 
interdisciplinary research. Implementing in situ and operando experi-
ments that can reveal dynamic changes during materials synthesis will 
enable a deeper mechanistic understanding of the process involved. 
These enhancements will not only improve the functionality, afford-
ability, and reliability of autonomous laboratories but also empower 
more researchers to leverage the benefits of autonomous research and 
collaboratively push this technology forward.
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