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Abstract
Generalized-stacking-fault energy (GSFE) serves as an important metric that prescribes
dislocation behaviors in materials. In this paper, utilizing first-principle calculations and
chemical bonding analysis, we studied the behaviors of generalized stacking fault in graphene
and h-BN. It has been shown that the π bond formation plays a critical role in the existence of
metastable stacking fault (MSF) in graphene and h-BN lattice along certain slip directions.
Chemical functionalization was then proposed as an effective means to engineer the π bond, and
subsequently MSF along dislocation slips within graphene and h-BN. Taking hydrogenation as a
representative functionalization method, we demonstrated that, with the preferential adsorption
of hydrogen along the slip line, π electrons along the slip would be saturated by adsorbed
hydrogen atoms, leading to the moderation or elimination of MSF. Our study elucidates the
atomic mechanism of MSF formation in graphene-like materials, and more generally, provides
important insights towards predictive tuning of mechanic properties in two-dimensional
nanomaterials.

Supplementary material for this article is available online

Keywords: generalized stacking fault, graphene, conjugated π bond, dislocation

(Some figures may appear in colour only in the online journal)

1. Introduction

Atomic scale defects, including vacancies [1–5], dislocations
[3, 6–8], stacking faults [9–11] and grain boundaries
[3, 6, 8, 12, 13], in 2D materials can have a profound influ-
ence on the overall material behaviors, either as the origin of
degradation that needs to be predicted and controlled, or as
the source of new properties to be exploited [1, 14–17].
Therefore, it is highly desirable to understand the formation
processes and function mechanisms of defects, and to be able

to engineer the structure and distribution of them, in order to
control or tune electronic properties [4, 18, 19], optical
properties [13, 20, 21], and mechanical properties [7, 18,
22–26].

Recently, particular concern has been placed on dis-
location behaviors in 2D materials, such as graphene
[9, 13, 18] and hexagonal boron nitride (h-BN)[6, 17, 27]. For
instance, the dislocations were shown to introduce dispersive
impurity levels within materials and therefore modify the
electronic band structure of materials [6, 8, 27–31]; More-
over, lattice distortion could induce formation of dangling
bonds and trapping states, thus consequently altering the
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magnetic and transport properties within these materials
[3, 6, 20, 29, 32].

A critical metric in understanding dislocation behaviors
in materials combining atomistic and a continuum scale is the
Peierls−Nabarro model [10], in which the generalized-
stacking-fault energy (GSFE) curve is required. The GSFE
represents the energy cost associated with the shear dis-
placement of dislocation slip. It plays a key role in prescribing
the core structure and slip characteristics of dislocations. The
GSFE curve can also serve as an essential input for the Peierls
−Nabarro model [10] to enable continuum description of
dislocations.

In the present study, GSFE profiles of graphene and
h-BN were studied, considering the effect of doping (i.e., B
and N doping of graphene, and C doping of h-BN). It was
demonstrated that the formation of metastable stacking fault
(MSF) in GSFE are strongly connected to the π conjugated
bonds along the slip line, which can be further tuned via
chemical functionalization such as hydrogenation. Our find-
ings suggest that the dislocation characteristics and sub-
sequent deformation behaviors in graphene like materials,
may be regulated by chemically modification.

2. Methodology

Graphene and h-BN nanoribbons of width around 3 nm have
been constructed for our DFT calculations. The lattice con-
stants of graphene and h-BN are obtained to be 2.46 Å and
2.52 Å respectively, consistent with previous studies
[1, 2, 4, 12, 13, 33] in the literature. The nanoribbons are
separated from its periodic image along the armchair direction
by a vacuum region of 2 nm, which has been confirmed to
sufficiently eliminate image interactions. In all the simulation
cells, two periodic units are used in periodic dimensions.
Since we are particularly interested in the local atomic
bonding at the center region of stacking fault, the length along
the periodic direction would not affect the conclusions of our
results.

For both graphene and h-BN, we focused on the glide
slip, i.e., dislocation slip occurring across zigzag bonds, as
shown in figure 1. Note that there are other common crys-
tallographic directions, which were not considered here
because the those slip directions cannot provide the local
atomic environment for conjugated π bond forming (illu-
strated in figure S1, available online at stacks.iop.org/
NANO/29/09LT01/mmedia in the supplementary informa-
tion). To obtain the GSFE curve, the atoms on one side of the
slip line were incrementally shifted with respect to the other
side, and the associated energy cost per unit displacement was
monitored. The procedure of displacement and subsequent
relaxation are in accordance with previous studies [9, 10, 34].
When examining the effect of doping, common dopants, i.e.,
B and N in graphene and C in h-BN [9, 33], were considered.
The introduction of dopants would only affect the chemical
bonding of substituted atom with its nearest neighboring
atoms. Therefore, the concentration variation, as well as
coexistence of dopants, would certainly affect the amount of
computed energies, but will not offer new types of local
bonding configurations. Since we are focusing on the orbital
overlapping of atoms due to formation of stacking fault, both
concentration variation and coexistence of dopants will not
affect the conclusions made. As a result, when it comes to
doping conditions, we replaced all the sublattice atoms at the
center region of the stacking fault (as shown in figure 1).
Below, we denote N and B doping in graphene as CN and CB,
respectively, while the substitution of N and B by C atoms in
h-BN as NC and BC respectively, for ease of description.

Spin polarized DFT calculations were performed using
the Vienna ab initio simulation package (VASP) [3] with
projector augmented-wave (PAW) [1, 31, 35–37] pseudopo-
tentials. The exchange correlation functions are approximated
by generalized gradient approximation (GGA) of Perdew,
Burke, and Ernzerhof (PBE). In each calculation, the energy
cutoff is set as 500 eV while 1×5×1 K mesh is applied.
Both energy cutoff and k points have been benchmarked
with larger values showing neglected energy difference
(<0.01 eV).

Figure 1. Illustration of atomic structure at slip displacement δ=0.5b for (a) graphene; (b) h-BN.
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3. Results and discussions

3.1. GSFE profiles and bonding configurations in graphene

The computed GSFE profiles are demonstrated in figure 2(a).
It can be seen from these profiles that there exists a metastable
stacking fault (MSF), γsf, signified by the local minimum in
the GSFE curve at slip displacement δ=0.5b with b being
the magnitude of the Burgers vector, for the pristine and
N-doped graphene. On the other hand, for the case of B
doping along the slip line, the MSF is absent in the GSFE
curve.

To understand the formation of MSF and its relation to
the local bonding configuration, we examined the electron
localization function fELF which can be formulated as:

f r1 1 . 1ELF
2c= + s( ( )) ( )

The χσ in equation one refers to the dimensionless locali-
zation index (details are provided in the supplementary infor-
mation). As expected from equation (1), the value of fELF stays
in the range [0, 1]. Generally, when an electron delocalizes
at certain sites, fELF would have a value close to 0. On the other

Figure 2. (a) The GSFE profiles along the slip direction for pristine, B-doped (CB) and N-doped (CN) graphene. The MSFs are indicated with
the symbol star; (b) corresponding electron localized function plots at slip displacement δ=0.5b. (c)–(e) The deformation charge density
plots illustrating the local bonding configurations across the slip line for pristine, B-doped (CB) and N-doped (CN) graphene, respectively, the
isosurfaces are colored by calculated electrostatic potential and the key bonding atoms are indicated by dotted circles. The C, B and N atoms
are respectively colored gray, green and light blue.
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hand, in the case of electrons being strongly localized, fELF
would approach 1. As demonstrated in figure 2(b), it is
obvious for pure graphene that the electrons around the C-C
bond along the slip are localized, not only in the space
between two C atoms, but also in the space around them.
Similar phenomenon can be observed for N doping along the
slip line (denoted as CN in figure 2). However, in the case
where C atoms along the slip line are substituted by B atoms,
the electrons are only localized at the space between C and B
atoms (see figure 2(b)).

To better visualize and understand the local bonding, the
deformation charge density has been also computed, by cut-
ting the isosurface from the center of C atoms in the line
perpendicular to the slip direction. The resultant bonding
configurations (at δ=0.5b) are demonstrated in figures 2(c)–(e)
for the three systems considered. The electrostatic potential
is calculated and used for surface coloring so that the density
of electron at certain location can be directly viewed from
the color scheme. From figure 2(c), the electron clouds from
C atoms not only forms head-on overlapping, but also
overlapping at the space around. The ‘head to head’ bonding
can be attributed to the σ bond, while the overlapping aside
from σ bonds delocalize slightly away from the atoms but
the isosurface wrap two bonding atoms, which satisfy the
feature of π bonds. When comes to CN conditions, the
existence of orbital overlapping with both σ and π features
are also observed, which indicates similar bonding situation
as the pure graphene case. However, when C atoms are
substituted by B atoms, only head-on orbital overlapping
can be observed between C and B atoms, while the π bond
feature of electron cloud is absent.

The above observations suggest that those GSFE profiles
illustrated in figure 2(a) can be understood in terms of local
bonding configurations. When the graphene lattice is shifted
by δ=0.5b along the glide slip, conjugated π bonds would
form in the pure and N-doped graphene systems. When comes
to B-doped system, the π bond formation is absent. The
reason underlying the above distinction in the bonding con-
figuration can be obviously explained by the valence elec-
trons of C, B, and N systems. For C and N atoms, there are 4
and 5 valence electrons in the outer shell so that the dangling
electrons at stacking fault can be excited to form π bond,
which will release energy and thus make the configuration
metastable. On the other hand, B atom has only 3 valence
electrons in the outer shell, which is insufficient for con-
jugated π bond formation.

3.2. GSFE profiles and bonding configurations in h-BN

Being an isomorph of graphene, h-BN possesses an identical
lattice structure but different electronic structure. As shown in
figure 3(a), the GSFE curves of pristine h-BN and NC-doped
h-BN along the glide slip exhibit no MSF. However, MSF is
present (at δ=0.5b) in the GSFE curve of the BC-doped
h-BN.

Figure 3(b) shows the fELF contour for pristine and
C-doped h-BN to illustrate the electron distribution around
the slip line at δ=0.5b. Examining the triplet atomic line

(i.e., N-B-N, N-C-N and N-B-C, see figures 3(c) and (d))
across the slip, we see that only under BC doping, the electron
distribution wrap up the three atoms at the triplet atomic line.
The local bonding configurations across the slip line are
further illustrated by the deformation charge density plots in
figures 3(c) and (d). We note that σ and π bonds coexist at the
triplet atom line N-C-N (see figure 3(c)) in the case of BC

doping, presumably induced by the introduction of an extra
valence electron contributed by the substitution of a C atom.
On the other hand, the formation of the π bond is not
observed in the cases of pristine and CN doped h-BN due to
the lack of valance electrons in B atoms. Consequently, the
conjugated π bond formation resulted in energy release and
MSF only occurs for the BC-doped h-BN.

3.3. Engineering GSFE through hydrogenation

The connection between the conjugated π bonding and MSF
for graphene and h-BN provides intriguing hints towards
engineering the GSFE and subsequently dislocation slip
characteristics within graphene-like 2D materials. In the fol-
lowing we demonstrate that the GSFE can be further
manipulated through adsorption of atoms for altering the π

bond. In particular, we focus on hydrogenation, which is easy
to realize and commonly used in graphene and h-BN systems
[38–43], as a representative.

A schematic illustration of the hydrogenation process is
given in figure 4(a). In this design, the tendency of hydrogen
adsorption can be controlled by adjusting the hydrogen che-
mical potential (or equivalently the partial pressure of
hydrogen gas). Meanwhile, the most favorable sites for
hydrogen adsorption on MSF decorated graphene/h-BN can
be inferred from local potential calculations. As demonstrated
in figures 4(b)–(d), for three MSFs identified above (i.e.
pristine graphene, graphene with CN doping and h-BN with
BC doping), the local potentials are calculated with a line scan
perpendicular to the slip direction. The relative energy taking
vacuum (set as 0 eV in figures 4(b)–(d)) as a reference refers
to the work function (indicated as WF) of a specific spatial
location, which describes the energy required to remove an
electron from the system. In general, the lower value of WF

takes, the more active electrons in that site will be. As a result,
the H adsorption activity of certain location in graphene/h-
BN can be estimated from the local potential mapping1. Due
to the periodicity and spacing of atom arrangement in the
solids, the calculated local potential fluctuates along the
direction perpendicular to the slip line. The upper enveloping
line is chosen for demonstration in figures 4(b)–(d). As illu-
strated by figures 4(b)–(d), for all three types of configura-
tions discussed, the most active sites are observed in the
location of MSFs. More specifically, for pristine graphene,
the calculated minimum work function WF

min is 3.51 eV for
the MSF within pristine graphene, while for the other
locations of graphene WF turns out to be around 4.6 eV. As
for graphene with CN doping, the WF at MSF sites can be as

1 Note: The smaller the energy gap between specific site and vaccum, the
more active the site will be.
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low as 2.99 eV, while other sites far away from the MSF
region have the value around 4.6 eV. When it comes to h-BN
in BC doping, the WF at MSF sites turns out to be 4.4 eV,
while in the other sites the value is around 6.22 eV. All those
comparisons indicate that during hydrogenation procedure,
H atoms tend to get absorbed near MSFs and interact with
conjugated π bonds. Meanwhile, as reported by previous
theoretical and experimental studies, the small reaction
barrier for H diffusion [44–46] in graphene and h-BN will
also make the aggregation of H kinetically favorable.

With the possibility of controllable H adsorption, the
GSFE profiles with hydrogenation are compared with the
situations without hydrogenation (dehydrogenation). By

observing the GSFEs in figure 4(b), it can be found that for
pristine graphene, the slightly decrease of GSFE (around
0.02 eV/Å) at δ=0.5b disappear after the adsorption of
hydrogen atoms. As a result, MSF will disappear. Addition-
ally, the calculated isosurface of deformation charge calcu-
lations embedded, clearly demonstrates the change of
bonding configurations. It is obvious that with the adsorption
of H atoms, the conjugated π bond disappears as a result.
Similarly, for graphene with CN, as shown in figure 4(c), MSF
will gradually disappear accompanied by the hydrogenation
process. When it comes to h-BN stacking fault with BC

doping as demonstrated in figure 4(d), the MSF will not
disappear completely even with all C atoms decorated with

Figure 3. (a) The generalized stacking fault profile along the slip direction. The MSF is indicated with the symbol star; (b) electron localized
function plot of three types of stacking fault configurations; (c)–(e) bonding analysis of the MSF in the slip direction of h-BN. The bonding
atoms are indicated by dotted circle. The isosurfaces are colored by a calculated electrostatic potential. (c) The shape of boron bonds and
nitrogen bonds in pristine h-BN; (d) the shape of carbon bond with the BC substitution; (e) the shape of carbon bond with the NC substitution.
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one hydrogen atom. However, the energy release due to
forming of MSF decrease from 0.75 eV/Å to 0.06 eV/Å, that
indicates a great weaken of conjugated π bonds due to
hydrogenation. This phenomenon can also be confirmed with
the corresponding deformation charge density plot.

The information from figure 4 elucidates the fact that
with hydrogenation, the π electrons will be saturated by H
atoms adsorption. As a result, the MSFs in graphene and
h-BN would disappear or be significantly weakened. This
confirm the possibility of controlling dislocation behavior of
graphene-like materials with chemical functionalization. As
demonstrated in our first principle theoretical study, the
overall procedure is precisely controllable and reversible with
the tuning of chemical potential of functionalization atoms.
Therefore, our theoretical investigations will hopefully

provide some new insights in tuning the mechanical proper-
ties and behaviors in graphene like 2D materials.

4. Conclusions

In summary, we studied GSFE curves along dislocation slips
within graphene and h-BN, considering the effect of doping
(i.e., B and N doping of graphene, and C doping of h-BN)
employing first-principles calculations together with chemical
bonding analysis. The existence of MSF in those materials
was shown to be strongly connected to the formation of the
conjugated π bond. Chemical functionalization was proposed
as a possible means to engineer the local bonding config-
uration along the slip line, demonstrated with hydrogenation

Figure 4. (a) Schematic illustration of the hydrogenation/dehydrogenation process. (b)–(d) The figures on top illustrates the local potential
distribution of graphene or h-BN with MSF, with the correspondent atomic configurations given in the middle figures, while the resultant
GSFE profiles under hydrogenation and dehydrogenation are shown in the bottom figures, with the systems being respectively: (b) graphene
without doping; (c) graphene with CN doping and (d) h-BN with BC doping.
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as an example. In hydrogenation, hydrogen atoms were
shown to preferentially adsorb along the faulted slip line
where more active sites exist, therefore allowing targeted
functionalization and tailoring of the local bonding config-
uration. As a consequence of hydrogenation, π bonds can be
gradually saturated which can finally lead to the dis-
appearance of MSF. Our findings clarify the atomistic origin
underlying MSF in graphene-like materials, and provide
important theoretical insights towards predictive tuning of
dislocation behaviors, and consequently mechanic properties
in graphene-like, and more generally two-dimensional
nanomaterials.
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