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Abstract
Li-ion and Na-ion battery materials have experienced rapid growth over the past decades and have become emblematic of the clean energy industry. 
Driven by advances in computational methods and data-driven research, this review provides an overview of key developments in physical modeling, 
data mining, and machine learning. In particular, it highlights how to understand the complex interplay of various types of disorder, accurately predict 
ionic conductivity, and develop specialized databases and machine learning frameworks.

Introduction
The growing demand for next-generation rechargeable Li-ion 
and Na-ion batteries has led researchers toward previously dis-
missed avenues of research.[1–9] Despite all kinds of innovation 
made in this field, developing low-cost and high-performance 
Li-ion and Na-ion batteries remains a persistent pursue.[10] With 
the rise of data science, how much it can benefit the develop-
ment of Li-ion and Na-ion battery materials is an open ques-
tion. Several important problems to solve are (a) How to reduce 
the cost of materials and the usage of critical metals with mini-
mum performance trade-offs; (b) How to leverage the exist-
ing modeling tools to enhance mechanistic understanding of 
electrochemical process; (c) Expanding and refining existing 
battery databases to address more specialized problem rather 
than offering only a broad overview build on generic materials 
databases.

These prospectives aim to present an overview of progress 
in tackling the above-mentioned challenges. Particularly, it 
will summarize several key specialized modeling tools avail-
able, as well as the specialized problems they can solve.[11–23] 
Examples can be represented by the modeling of disordering in 
batteries, understanding the key local structures for enhancing 
ion diffusion, as well as predicting low temperature diffusion 
behaviors that deviate from Arrhenius relation. Moreover, the 
development of specialized Li-ion and Na-ion dataset contrast-
ing with the Moore’s scaling law of transistor development 
will be reviewed, aiming at highlighting the capability of data 
mining nowadays for Li-ion and Na-ion battery development. 
Last but not least, a perspective of how to adapt the state-of-
the-art machine learning into acceleration of Li-ion and Na-ion 
battery development will be presented, with particular empha-
sis on what is overlooked in the current surging foundation 
AI development. It is hoped that this work can offer a quick 
refreshment of where we are in terms of data-driven Li-ion and 
Na-ion battery design.

Specialized modeling tools
Disorder is a common feature in Li-ion and Na-ion materials, 
particularly for those battery materials with high performance. 
In such systems, ionic conductivity is influenced by both local 
structural disorder and the formation of percolation networks. 
Recent advances have shown that compositional disorder and 
short-range order play key roles in shaping electrochemical per-
formance. Percolation analysis can be used to optimize trans-
port properties. When combined with computational methods 
such as Ab initio Molecular Dynamics (AIMD) and Machine 
Learning Force Field Molecular Dynamics (MLFF-MD), struc-
tural analysis enables the evaluation of ionic conductivity. 
Together, these approaches offer a framework for engineering 
disorder for enhancing ion transport.

The modeling of disordering 
and percolation network
Disordering is a common phenomenon in both Li-ion and Na-
ion battery materials.[24,25] In most cases, this disorder is com-
positional, where the overall crystal structure remains largely 
intact, but ionic mixing occurs well beyond the dilute limit. 
Modeling and understanding such disorder require specialized 
tools from both theoretical and experimental perspectives, with 
a strong emphasis on local structural analysis. Furthermore, 
the structure–property relationship in battery materials criti-
cally depends on understanding how local structures influence 
electrochemical properties, particularly ion transport.

Substantial efforts have been devoted to studying metal 
oxides with coupled FCC sublattices for both cations and ani-
ons. Notably, common cathode materials such as layered and 
spinel structures feature distinct Wyckoff positions for transi-
tion metal (TM) ions and lithium sites, effectively separating 
their sublattices.[11] More recently, cation-disordered rock-
salt (DRX) Li-ion battery materials have attracted increas-
ing attention.[26–28]  In these structures, lithium and transition 
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metal ions share the same sublattice, resulting in an “average” 
rocksalt-like crystal structure.[13] A demonstration of the typi-
cal rocksalt-like crystal structure and the locations of cations 
and anions is given in the top left of Fig. 1(a). The periodic 
bond topology in DRX Li-ion battery materials is referred to 
as long-range order (LRO). However, these materials often 
exhibit remnants of cation pair preferences, leading to a variety 
of local environments known as chemical short-range order 
(CSRO).[29] The identification of these local structures can 
be seen through the analysis of the pair distribution function 
(PDF).[14] By inspecting the Bragg peaks of the scattering 
spectrum, one can gain insight into the LRO of the average 
structure. As a contrast, by looking at the diffuse scattering 
from different total scattering tools, one can gain a quanti-
tative description of CSRO.[14,30] This is seen in the graph 
in Fig. 1(a), where a change can be observed between the 
observed and calculated peaks, giving insight into the appear-
ance of CSRO.[30]  By further identification and understanding 
of the local structures within a DRX Li-ion crystal structure, 

one can investigate the control handles of disordering as well 
as the ion transport.[31]

More specifically, a generalized theoretical framework that 
explains the synergistic effect of disordering is presented in 
Fig. 1(b). Particularly, the random distribution of local distor-
tion will effectively create a spectrum of site energies, which 
could lead to the potential of similar site energies of nearest 
neighboring sites.[32] By controlling the population and distri-
bution of local structures, we can effectively control the site 
energy overlaps, which eventually lead to tailorable micro-
scopic diffusivity.

Beyond the general theory of disorder’s impact on ion dif-
fusion, a specific example is illustrated in Fig. 1(c). Studies 
on DRX-type cathode materials have shown that ion trans-
port is primarily governed by hops between octahedral sites 
via intermediate tetrahedral sites—referred to as o–t–o diffu-
sion—as demonstrated in Fig. 1(c).[11] The activated Li in the 
tetrahedral site face shares with four octahedral sites, those 
being the site that the Li previously occupied, the site that the 
Li is moving into, and two other sites that can be occupied by 

Figure 1.   (a) Illustration of the key local structures and representative characterization results in Li-ion cathode materials. The top-left 
crystal structure is that of a typical DRX crystal structure, with the cations being Li or TMs and the anions typically being oxygen or 
fluorine.[15] The bottom-left crystal structure is related to the types of CSRO that has been observed in cation sublattices of DRX.[15] The 
top-right graph is a comparison between a calculated PDF pattern and an observed pattern.[14] The bottom right figure is a comparison 
between the experimental electron diffraction with the simulated one from cluster-expansion Monte Carlo simulation.[15] (b) The sche-
matic on the left demonstrates how lattice distortion caused by disordering causes overlapping energy densities.[32] The graph on the 
right shows the fraction of Li percolating sites as a function of energy for both distorted and undistorted structures.[32] (c) Illustration of 
the diffusion mechanisms that occur in Li-ion cathode materials. The o-t-o diffusion is the general ion hopping pathway.[11] The 1-TM 
channel signifies that the Li in the tetrahedral while hopping will face-share with 1 TM.[11] The 0-TM channel signifies that the Li in the 
tetrahedral site while hopping will face-share with 0 TMs. The graph at the bottom is the calculated Li migration barriers 0-Tm and 1-TM 
channels.[11] (d) Top graph is the processed atomic resolution STEM image that shows the Li distribution because of CSRO.[15] The middle 
graph shows the computationally predicted percolation map in Li–M–O–F system.[13] The bottom graph shows a schematic of how perco-
lation happens at particle size level in a composite.[33]
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TMs or Li. In Li-TM oxide layered structures, this hopping 
mechanism occurs when there is one transition metal face-
sharing with the tetrahedral site that the Li-ion is hopping 
through and is referred to as a 1-TM channel, Fig. 1(c).[11] 
The main diffusion mechanism for DRX cathode materials 
differs from layered compounds. Instead, Li diffusion occurs 
the easiest when there is no TMs face-sharing the tetrahe-
dral site, which is referred to as 0-TM channels, Fig. 1(c).[11] 
The graph located in Fig. 1 shows that the energy barrier for 
Li diffusing through a 0-TM site is less than if it diffused 
through a 1-TM site for DRX materials. Therefore, 0-TM 
channels have the potential to enable facile diffusion of Li 
through DRX Li-ion cathode materials. However, this is not 
without its limitations, mainly due to the frequency of these 
channels that occur in structures.

With an understanding of key local structures, the rational 
design of electrochemical properties can be achieved by control-
ling the percolation of these critical features—for example, the 
0-TM channel. Representative examples across different length 
scales, supported by both experimental and theoretical studies, 
are presented in Fig. 1(d). The top panel highlights work by Li 
et al., which combines aberration-corrected scanning transmis-
sion electron microscopy (STEM) with selected area electron 
diffraction (SAED), cluster-expansion Monte Carlo (CEMC) 
simulations, and simulations of both STEM imaging and elec-
tron diffraction.[15] The middle panel presents a theoretical per-
colation analysis based on Monte Carlo-simulated structures. 
The color contour illustrates the extent of Li percolation as a 
function of Li and F content.[13,34] These simulated structures 
align well with experimentally measured pair distribution func-
tions (PDF) and SAED patterns, as shown in Fig. 1(a).[14] Fur-
thermore, percolation behavior can extend to much larger length 
scales, as illustrated schematically in Fig. 1(d). While 0-TM 
channels offer reasonable diffusivity for high-rate cathode mate-
rials, they are still insufficient to meet the conductivity require-
ments for solid electrolyte applications.[35] To further boost the 
ionic conductivity, introducing an over-stoichiometric amount 
of Li into the formula has been shown as an effective strat-
egy. With this, it unlocks a new range of chemistries that were 
previously thought unavailable. Looking at the bottom panel 
of Fig. 1(d), the extra Li that makes cation/anion ratio larger 
than one will lead to the formation of a composite at nanoscale. 
The composite is made from DRX phase as well as spinel-like 
phase with cation/anion ratio larger than one. The spinel-like 
phase, referred to as the s-phase in Fig. 1(d), shows orders of 
magnitude higher ionic conductivity than DRX phase. It has 
been shown in the bottom of Fig. 1(d) that if the s-phase can 
percolate well enough in the composite, the ionic conductivity 
at room temperature can reach mS/cm level.[36]

Understanding local structures and percolation in Li-ion bat-
tery materials has enabled the tuning of their electrochemical 
performance. Similarly, local structure has emerged as a criti-
cal design parameter in Na-ion battery materials. A prominent 
example is the well-known NASICON family, which exhibits 

high ionic conductivity and electrochemical stability, making 
it suitable for both electrode and solid-state electrolyte appli-
cations. Designing NASICONs for improved performance 
requires a deep understanding of how local structural features 
influence material behavior. Key factors include bottleneck size 
and Na-site ordering, both of which are typically affected by the 
mixing of polyanions or cations.[37] The bottleneck size governs 
the transition state through which Na ions migrate between 
sites, while Na-site ordering shapes the overall energy land-
scape for ion diffusion. Together, these factors define the key 
local structures that control ionic transport in NASICON-type 
materials.

To investigate how bottleneck size influences Na-ion diffu-
sion, several metrics for quantifying the bottleneck geometry are 
presented in the top half of Fig. 2(a). The bottleneck is character-
ized in three ways: (1) the height (LBN) between the metal cation 
site (M) and the adjacent polyanion site that shares an edge with 
the bottleneck, (2) the area (SBN) of the triangular cross-section 
traversed by Na ions, and (3) the volume (VBN) of the bottleneck 
tetrahedron.[37] As demonstrated by He et al., the volume of the 
bottleneck tetrahedron shows the strongest correlation with ionic 
conductivity.[37] It is important to note that a minimum bottleneck 
size is required to achieve ionic conductivities greater than 10–4 
S cm−1. While the bottleneck volume (VBN) depends on com-
position, it is not solely determined by the average anion radius 
( RAvg

Anion
 ) or average cation radius ( (RAvg

Cation
 ) alone. As shown in 

the bottom half of Fig. 2(a), VBN can vary significantly even 
when either of these radii is held constant. Therefore, both radii 
must be considered together when optimizing VBN. Specifically, 
a combination of large cation and anion sizes is necessary to 
achieve larger bottleneck volumes.[37]

In some cases, a large bottleneck volume does not translate 
to high ionic conductivity. This discrepancy is primarily due to 
the second key descriptor—Na-site ordering—which governs 
the local hopping mechanism in NASICON materials. Depend-
ing on the local ordering, two distinct diffusion mechanisms 
can occur: single-ion hopping (SIH) and occupancy-conserved 
hopping (OCH). As illustrated in Fig. 2(b), the energy differ-
ence between the 6b and 18e sites varies with the specific dif-
fusion mechanism.[37] When there is a strong ordering tendency 
of the charge carrier ion, the energy barrier for OCH is lower 
than that for SIH, as shown in the energy landscape of Fig. 2(b). 
This is because, in OCH, the 6b site is never fully vacated dur-
ing hopping, whereas in SIH, it is completely vacated, result-
ing in a higher barrier. However, when the ordering tendency 
is minimal, the energy difference between the two diffusion 
mechanisms becomes negligible. This understanding also 
informs the design of high-entropy NASICON-type Li and Na 
conductors, where maximizing disorder effectively flattens the 
energy landscape and promotes more uniform ion transport.[32] 
These insights highlight the importance of understanding key 
local structures within a material class to effectively tune 
desired properties through engineered disorder. By elucidating 
and manipulating ionic conduction frameworks, new research 
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directions can emerge, enabling the discovery and design of 
next-generation Li-ion and Na-ion materials.

Understand ion transport with AIMD 
and MLFF‑MD
In addition to topological analysis of local structures and per-
colation networks, techniques such as Ab Initio Molecular 
Dynamics (AIMD) and Machine Learning Force Field Molecu-
lar Dynamics (MLFF-MD) offer direct estimates of diffusivity 
for a given structure. Moreover, these methods can help iden-
tify key local structural features that govern ionic conductiv-
ity. Both approaches have recently been employed to uncover 
previously overlooked interactions in a range of Li-ion and Na-
ion battery materials. A schematic summary of these insights 
is presented in Fig. 3.

Taking Li-ion conductors as an example, AIMD has been 
used to analyze face-sharing configurations of lithium, inves-
tigate complex diffusion, and study Li-ion interactions with 
other molecules.[33,38,39] When it came to probing Na-ion bat-
tery materials, AIMD simulations were used to investigate 
Na-ion diffusion in various superionic conductors for helping 
guide the compositional optimization, while also probing if 
it is possible to use first-principle calculations to validate if 
a certain framework is viable for use as a solid-state superi-
onic conductor.[39–41] In addition to directly simulating ionic 

conductivity, AIMD also serves as a powerful tool for uncov-
ering the underlying diffusion mechanisms. Two illustrative 
examples are shown in the top-left and top center panels of 
Fig. 3. In the top-left panel, AIMD was used to investigate the 
relationship between polyanion rotation and Li diffusion. The 
results indicate that the rotation of the lightweight (BH4)− group 
has minimal impact on Li diffusion due to the mismatch in their 
characteristic mobility frequencies.[39] In the top center panel, 
the influence of polyanion species and Na-site occupancy on 
diffusion mechanisms was examined in Na argyrodites.[41] The 
Na probability distribution reveals that switching from exclu-
sive occupancy of the 4c site to partial occupancy of both the 
4a and 4c sites significantly alters the diffusion pathway, lead-
ing to orders-of-magnitude enhancement in ionic conductivity.

AIMD usually has its drawback of being limited in pre-
dicting at extended time and length scales. It thus becomes a 
challenge when comes to low temperature predictions, e.g., 
room temperature predictions. People will usually assume 
Arrhenius behavior from high T, e.g., 1500 K or more to low 
T, e.g., 300 K. As being demonstrated in the top-right panel of 
Fig. 3, such endeavor will not always work due to the poten-
tial of structural evolution. The type I mechanism is what usu-
ally occur, while type II and Type II behaviors are also widely 
observed in many materials.[42] Therefore, it may not always 
be reliable to extrapolate high-temperature AIMD simulations 
to room temperature. Machine learning force field that enables 

Figure 2.   (a) The diagram at the top shows the local structures at which diffusion occurs along with the factors that are related to bottle-
neck size and where they are.[37] The graph at the bottom is the 2D correlation between the bottleneck volume and the size of the anion 
and cation.[37] (b) Related to the diffusion mechanisms of Na in NASICONs.[37] The top possible diffusion mechanisms being SIH and 
OCH, with the energy landscapes for both mechanisms below.[37]
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longer time and larger scale simulations will be crucial to 
address those challenges.

As demonstrated by Qi et al., moment tensor potentials 
(MTP) were trained on DFT values, and for all three Li 
superionic conductors (LSCs) that were investigated, non-
Arrhenius transitions were observed, which is also shown in 
the bottom right panel in Fig. 3.[43] The three LSCs that were 
selected had previously not shown non-Arrhenius behavior. 
The past five years have observed the rapid growth of various 
types of machine learning force fields. To give a few more 
examples on LSCs: perovskite lithium-ion conductors have 
also been investigated using MLFFs. More specifically, the 
influence of Li-site occupancy on ionic conductivity was 
investigated.[44] According to the ionic conductivities extrapo-
lated from MLFF based MD simulations, depending on the 
site at which Li is located, the ionic conductivity would differ 
greatly.

Specialized database for Li‑ion 
and Na‑ion batteries
With all the specialized scientific problems identified in the 
section above, building specialized databases customized for 
Li-ion and Na-ion based systems will be the best way to pivot 
the materials design challenge for both electrode and electro-
lyte. The past three decades have witnessed the development of 

battery design through first principle and the rising of materials 
genome approach. In this section, the development of special-
ized database for Li-ion and Na-ion batteries as well as the 
chemical science intuition will be reviewed.

Implication of Moore’s law 
in high‑throughput battery discovery
The vast compositional space of Li-ion and Na-ion battery 
materials necessitates high-throughput screening, rather than 
relying on empirical searches. Visualizing the evolution of 
high-throughput efforts over the past three decades reveals 
significant progress in screening strategies for these mate-
rials. A landmark study in computational screening can be 
traced back to Ceder et al. in 1998,[45] which demonstrated 
the feasibility of using first-principles methods to identify 
viable dopants for LiCoO2. This pioneering work led to the 
prediction and subsequent experimental validation of Al-
doped LiCoO2 with promising performance,[45]  as illus-
trated in Fig. 4 above the year 1998. This study stands out as 
one of the earliest successful examples of computationally 
guided battery materials design. Its publication in Nature 
and coverage on the MIT website underscore its importance. 
However, nearly 30 years ago, computational screening was 
still in its infancy, typically limited to evaluating only a few 
dopants at a time. Roughly a decade later, the launch of the 
Materials Genome Initiative catalyzed the first large-scale 

Figure 3.   Illustration of what AIMD is useful for and what it struggles to predict. Also illustrated is MLFF-MD, which is used to make up for 
the pitfalls of AIMD. The illustration and graph above the green AIMD box refer to the analysis of the ankling effect of local structure on 
Li diffusion.[39] The graph located in the top center indicates a comparison between different diffusion mechanisms in sodium argyrodites 
with different disordering.[41] The graph under the green AIMD box is meant to show that it must assume Arrhenius behavior to calculate 
ionic conductivities at room temperature.[38] The graph on top of the green MLFF-MD box is meant to illustrate other types of trends that 
can be seen, and that purely assuming Arrhenius behavior is not ideal.[42] The graph below the MLFF-MD greenbox is meant to signify 
that MLFF-MD at low temperature can capture these non-Arrhenius transitions.[43]
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computational screenings of battery materials. Around 2011, 
several notable high-throughput studies led by Ceder et al., 
as highlighted in Fig. 4, marked a turning point in the field. 
These efforts enabled the screening of hundreds of polyanion-
based compounds for Li-ion and Na-ion electrodes, with a 
focus on identifying optimal trade-offs between phase stabil-
ity and energy density.[46,47]

Tracing the Moore-like doubling trend shown as the dashed 
lines in Fig. 4, the throughput of DFT screening has surged 
to several thousand by around 2021. Ouyang et al. conducted 
large-scale screening of high-entropy disordered rocksalt-type 
Li-ion battery cathodes[48] and NASICON-type solid-state 
electrolytes,[18] covering 7965 and 3881 distinct composi-
tions, respectively. More recently, in 2025, Wang et al. reported 
the largest specialized screening to date, with 18,810 DFT-
computed disordered rocksalt-type cathode materials.[49] It is 
important to note that Fig. 4 does not aim to show the limit of 
high-throughput DFT calculations at each time period. It should 
be acknowledged that the true upper limit of high-throughput 
materials screening is much larger, as exemplified by initia-
tives like the Materials Project,[50] which aim to explore the 
global design space of materials. Instead, Fig. 4 is intended to 
illustrate what constitutes a practically achievable throughput 
when addressing a focused problem—such as the design of 
specific Li-ion and Na-ion battery materials. Encouragingly, 
as demonstrated by Lin et al.,[49] it is now feasible to screen 
the entire viable element space in combination with several 
prototype stoichiometries, encompassing tens of thousands of 
compositions. Moreover, it is worth mentioning that Moore’s 
Law has reached a bottleneck in recent years due to the unlikely 
feasibility to further scale down transistors. It thus highlights 

also that new paradigms of doing high-throughput battery mate-
rials screening will be needed in the near future.

Data mining stability rules 
from specialized database
High-throughput screening, along with machine learning mod-
els and experimental synthesis, also allows for the identifica-
tion of elemental stability rules. One representative elemental 
stability rule of cation-disordered oxides for earth abundant 
cathode materials in lithium-ion batteries is presented by Urban 
et. al.[17] as illustrated in Fig. 5(a). Cation-disorder is necessary 
for lithium transport in these lithium excess materials for elimi-
nating or minimizing critical metals, such as Co and Ni.[51,52]  
Whether these lithium metal oxides formed an ordered or dis-
ordered structure was tested by using the materials Order–Dis-
order (OD) transition temperature (Toroer).[17]

On the other side, the elemental stability rules for NASI-
CON electrolyte have been established by text mining the 3881 
DFT-computed compositions, with a visual representation of 
the rules in Fig. 5(b). The first key rule determined was the 
electronegativity of a metal requires a very careful balance, as 
it is bounded by both sides in a NASICON structure.[18] When 
a metal is too electronegative, it will favor competing phases 
where it is bound in a more covalent bonding environment. If it 
is too electropositive, it will also be unstable due to the removal 
of the necessary sodium-metal competition for ionization. The 
second key rule that was identified was that a large size differ-
ence among the M-sites as well as the mixing of the polyanions 
would lead to instability of the crystal structure.[18]

Last but not the least, data mining of elemental stability 
rules has been further extended to high-entropy Li-ion battery 

Figure 4.   Visual illustration of the number of compositions reported in papers and the year those papers were published for solving spe-
cialized Li-ion and Na-ion battery materials[18,45–49] A Moore-like doubling line is also plotted in the graph meant to represent the progres-
sion that high-throughput DFT has improved over time. The color of the box next to the graph corresponds to the paper the figure is from.
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materials.[49,53] The vast composition space urges larger scale 
databases, while it also values the insights from elemental sta-
bility. One recent effort from Wang et.al. has charted the ele-
mental space and established elemental stability rules by data 
mining 18,810 DFT computed HE-DRX compounds.[49] Such 
a large database was required to chart the large-composition 
space that exists for HE-DRX compounds. Not only that, but 
as seen in the top-left and top-right graph of Fig. 5(c), as of the 
date of publishing, there was a limited number of compounds 
experimentally reported that contained those metals. While the 
graphs below demonstrate that the elemental space charted by 
Wang et al. has been comprehensive enough to propose elemen-
tal stability rules of HE-DRX compounds.

There were three main considerations when it came to the 
stability rules of HE-DRX compounds. The first key consid-
eration is the redox compatibility of the compound, meaning 
that the electron configurations of the metals must be able to 
coexist in a single phase. The two next considerations fall hand 
in hand with each other, those being the stability of the redox 
centers and charge compensators. Typically, the redox centers 
and charge compensators that were considered stable were the 
metals that had similar Shannon radii in an octahedral environ-
ment to reported stable HE-DRX compounds.[49,54] This offers 
the potential of further investigation of stability of this com-
position space and replacement or minimization of cobalt and 
nickel in HE-DRX compounds.

Specialized AI
As demonstrated above, with the ever-improving computational 
tools to assess a wide-range of compositional spaces, the adop-
tion of models that offer insight into a wide variety of chemi-
cal properties is a desired outcome. Particularly, exploring 

the capability of proposing phenomenological theories for 
compounds, along with the prediction of viable candidates for 
desired use.

Symbolic machine learning 
for phenomenological theory
Phenomenological models offer not only predictive capabilities 
but also valuable physical insights into stability mechanisms 
and have been widely adopted throughout the history of chem-
istry and materials science. Notable examples in materials dis-
covery include the Goldschmidt tolerance factor for perovskite 
and the Zintl–Klemm rule for Zintl phases.[55] However, formu-
lating such phenomenological models is often nontrivial due to 
the structural and chemical complexity inherent in crystalline 
materials. In parallel with advances in deep learning efforts, 
symbolic machine learning has emerged as a powerful tool for 
accelerating the discovery of phenomenological theory.[18–20] 
Recently, considerable efforts have been devoted to extending 
symbolic machine learning approaches to the design of Li-ion 
and Na-ion batteries.

The SISSO method, which is an abbreviation of Sure Inde-
pendent Screening (SIS), in combination with sparsifying oper-
ator (SO) has emerged as an important symbolic machine learn-
ing protocol for materials science, with a simplified workflow 
in Fig. 6(a).[20] In addition to the original framework proposed 
by Ouyang et. al., the SIS part can be further interfaced with 
different classic machine learning models, such as decision tree, 
or machine learning ranking to achieve different results.[20,56] 
Outcomes are seen in the graphs of Fig. 6(b, c) after the sim-
plified workflow of the respective processes. Particularly, 
SIS + MLR has been used to find a tolerance factor that can be 
used to evaluate the synthesizability of NASICON solid-state 
electrolytes. Developed by Ouyang et al., the reason MLR was 

Figure 5.   (a) This graph represents the screening results that Urban et al. gathered from screening the composition space 
LiA0.5B0.5O2

[17] The color of the dot corresponds to the stability of the compound. The size of the dot indicates the likelihood that the 
cation will disorder. (b) The two schematics above the graphs represent the two major contributing factors to NASICON stability, bond 
compatibility and site miscibility[18] The graphs below show the distribution all the NASICON compositions reported (c) The top-left graph 
is the number of HE-DRX compounds experimentally reported which contains the metals seen, while the bottom-left graph is the number 
of HE-DRX compounds with the metals that are experimentally feasible (Ehull, 1473 K < 0) in the dataset generated by Wang et al.[49] The top 
chord diagram shows the elemental compatibility for the experimentally reported compounds, while the bottom chord diagram shows the 
elemental compatibility of HE-DRX compounds that are experimentally feasible (Ehull, 1473 K < 0) in the dataset generated by Wang et al.[49]
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utilized as the ranking of relative stability wanted to be the 
ordering of Ehull − SIdealT  , not the absolute value that would be 
generated through the utilization of only SISSO.[18] Like previ-
ously, SIS was first applied to the large feature space proposed, 
and the top 2000 1D features were identified. From the 2000 
1D features, MLR was used to find the best combination of 
two features that describes the stability of NASICONs. Driven 
by the successful application of symbolic machine learning in 
materials discovery, great opportunities are available to further 
translate the high-throughput computational dataset into phe-
nomenological theory and chemical intuition.[18–20,56]

Specialized AI versus general AI
In contrast to the relatively less explored domain of symbolic 
machine learning, deep learning based on neural networks has 
significantly advanced the field of materials chemistry in recent 
years. Substantial efforts have been devoted to developing uni-
versal machine learning models capable of rapidly predicting 
material properties across broad chemical spaces.[21,22,57–61] 
While benchmark datasets such as the Materials project[50] 
continue to yield progressively lower test mean absolute errors 
(MAEs), there is still no definitive claim that an all-compassing 
AI model exists—one that can accurately predict the proper-
ties of any Li-ion or Na-ion battery composition or structure. 
The gap highlights a key challenge in materials AI: rather than 

relying solely on the promise of a hypothetical artificial general 
intelligence (AGI) capable of solving all materials problems 
at once, it may be more effective to develop specialized AI 
agents tailored to specific materials domain.[62] Such special-
ized AIs, trained on domain-specific databases, are better suited 
to capture the intricacies of targeted materials challenges Fig. 7. 
Moreover, as shown in Fig. 7, when a specialized database is 
employed, the influence of model complexity on performance 
becomes much less pronounced compared to training data size.

Indeed, with modern high-throughput DFT capabilities, we can 
now generate millions of materials data points.[10,50] However, the 
true chemical design space is vastly larger—potentially exceeding 
millions of millions. Taking Li-ion batteries as an example, if we 
consider 20 viable metals and the exploration of high-entropy 
compositions (e.g., a 9-dimensional compositional space), even 
with a 0.1 increment in atomic fraction and one structure type, 
the number of possible materials already exceeds 25.6 billion. 
Attempting to learn from a few million data points—most of 
which may not be battery-relevant—within a generic database 
poses clear limitations for battery design. In such cases, using a 
universal model is akin to learning about the ocean from a million 
droplets: unless the algorithm possesses truly exceptional gener-
alization capabilities, its utility remains questionable. While the 
transformative potential of AI should not be dismissed, we remain 
cautious in expecting generic models to effectively accelerate the 
discovery of Li-ion and Na-ion batteries at this stage.

Figure 6.   (a) Workflow for SISSO, with the associated graph being an example of what SISSO was used to model[20] (b) Workflow for using 
SIS + a Decision Tree Algorithm, with the associated graph being one example of how it can be used to predict phase stability[19] (c) Work-
flow for SIS + MLR, with the associated being an example of how SIS + MLR can be used to model stability of NASICONs[18]
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Based on this analysis, we advocate for the development of 
specialized AI systems rather than placing all our hopes on artifi-
cial general intelligence (AGI). To use an analogy: a million data 
points can yield far more insight if you’re studying a swimming 
pool or a pond, rather than attempting to characterize the entire 
ocean. Recent progress in specialized AI lends strong support to 
this perspective. For example, applying a standard graph neural 
network to a domain-specific database—such as high-entropy 
disordered rocksalt (HE-DRX) materials used in Li-ion battery 
cathodes—has achieved testing mean absolute errors (MAEs) as 
low as 2 meV/atom, approaching the intrinsic noise level of DFT 
calculations. Crucially, these MAEs are orders of magnitude lower 
than those reported for universal machine learning models trained 
on general-purpose datasets.[21,22,57–61] Interestingly, this perfor-
mance trend holds across different deep learning architectures, 
suggesting that model complexity is less critical than the qual-
ity and specialization of the training data. These findings further 
emphasize the value of developing specialized AI agents focused 
on targeted research domains. Rather than a single AI to solve all 
of materials science, it is far more promising to build tailored AI 
tools—for instance, ones focused specifically on battery design, or 
even on a narrower subset such as layered oxide cathodes.

Conclusion
Advances in modeling, databases, and AI has led to the broad-
ening of design landscape for Li-ion and Na-ion battery materi-
als. Through the incorporation of AIMD and MLFF-MD into 
structure and percolation analysis, underlying mechanisms 
could be understood. This, along with the creation of special-
ized databases and advancements in high-throughput screening, 
has led to the establishment of stability rules that were not pre-
viously understood. Moreover, the use of AI in this same field 
has opened the door to potential futures where domain-specific 
models are able to accurately predict desired chemical proper-
ties. Together, these tools offer a framework for engineering 
disorder for future battery applications. As a contrast to the 
artificial general AI work, it is suggested that more emphasize 
should also be put on developing specialized AI framework.
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