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ABSTRACT: The center of the d-band or d-orbital of a transition
metal site serves as a key electronic structure descriptor in
electrocatalysis, yet its prediction across diverse material systems
remains challenging, particularly for disordered multi-principal-
element alloys (MPEAs). In this study, we present a general,
physically interpretable model for predicting d-center values across
a wide range of surfaces and compositions, including 10,680
density functional theory (DFT)-relaxed slabs and over 1.2 million
d-center values. Inspired by cluster expansion theory, the model
captures local coordination environments to accurately estimate d-
centers, achieving a mean absolute error (MAE) of ∼0.09 eV, even when considering only the first nearest-neighbor interactions. We
further demonstrate the influence of structural orientation of surface and featurization schemes for surface slabs, as well as regression
methods, revealing potential for further improvements with a trade-off between model generalizability and complexity with accuracy.
The resulting model offers rapid and reliable d-center estimation, enabling high-throughput screening and mechanistic interpretation
in catalysis design. Additionally, the model coefficients provide a direct and accessible tool for both experimentalists and theorists to
gain valuable insights into the MPEA surface electronic behavior.

1. INTRODUCTION
The computational discovery of novel electrocatalysis has been
guided by the identification of electronic structure descriptors.
The d-band theory has been proposed since 19951 and has been
broadly adopted to develop electronic structure descriptors.2−4

While the d-center is frequently reported to correlate directly
with the overpotentials of various catalytic processes,2−4

efficient prediction of d-center values across a broad range of
materials is still absent due to the absence of both systematic
data sets and universal models. The emergence of high entropy
catalysis has placed new challenges in calculating and predicting
the d-center values, as the disordering nature of such materials
creates a diverse amount of local structures.5−10

In this work, we propose that the prediction of the d-center
value can be accomplished by a universal model capable of
generalizing across different bulk structures, Miller indices,
elemental compositions, and stoichiometries. The model is
trained on a data set comprising 10,680 DFT-relaxed surface
slabs and 1,220,008 density functional theory (DFT) calculated
d-center values. With a broad energy distribution ranging from
−14 to 3 eV relative to the Fermi level, our model shows an
impressive fitting mean absolute error (MAE) around 0.09 eV,
even in its simplest form. The model is fully physically
interpretable, leveraging features derived from the atomic
fraction in the bulk structure and local coordination environ-
ment of surface atoms, based on the principles of cluster
expansion theory.11−16 Notably, even when considering only the
nearest-neighbor interactions, the model demonstrates high

accuracy. Further improvements can be achieved by refining the
feature vectors to include longer-range interactions, distinguish-
ing between surface and bulk atoms, and using more advanced
regularization methods. This research provides a valuable
reference for future catalysis studies based on the d-band
theory. The model coefficients can be conveniently used by both
experimentalists and theorists for the rapid estimation and
analysis of various catalytic performances.

2. METHODOLOGY
First-principles DFT calculations were performed to obtain an
accurate description of the structural energies and magnetic
moments of the different cathode materials. All calculations were
performed using the projector-augmented wave (PAW)
method17 as implemented in the Vienna Ab initio Simulation
Package (VASP).18 For all calculations, a reciprocal space
discretization of 25 k-points per Å−1 was applied, and the
convergence criteria were set as 10−6 eV for electronic loops and
0.02 eV Å−1 for ionic loops. The bulk compositions and
structures adopted for DFT calculations were obtained from a
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previously reported high entropy data set that contains up to
four constituent elements.19,20

3. RESULTS
3.1. High-Throughput Screening of MPEA Surfaces.

The high-throughput screening process begins with our
database of bulk MPEA compositions, which includes a
comprehensive set of ternary and quaternary equimolar
compositions.19,20 From this collection, a subset of composi-
tions predicted to be entropy-stabilized below 1273 K was
selected. The potential for entropy stabilization below 1273 K is
quantified by the Ehull − 1273SIdeal value, where Ehull represents
the energy above the convex hull of all possible competing
phases within the corresponding MPEA compositional space.21

Such methods have been widely used to quantify stability of
multicomponent materials and have been verified by many
studies, demonstrating promising performance in predicting
synthesizability.8,15,22−24 Additional filters were applied based
on material cost and aqueous stability, as illustrated in Figure
1(a). Specifically, a price cutoff of £2,000 per kilogram was used

to screen for low-cost compositions, based on element prices
provided by CompoundChem.25 In parallel, MPEA composi-
tions containing noble metals were considered with a focus on
aqueous stability. To assess this, the decomposition driving force
in aqueous environments was calculated, and a decomposition
energy threshold of 0.2 eV/atom was applied to identify noble-
metal-containing MPEAs that exhibit relative stability according
to Pourbaix diagram3,26,27 calculations. The above-mentioned
screening workflow ultimately led to the identification of 605
bulk MPEA compositions. Their corresponding low-index
surfaces were then screened and constructed, leading to a final
data set of 10,680 surface slabs, each computed using DFT. For
each Miller index, all possible surface terminations are
enumerated to capture a diverse set of surface orientations for
a given bulk composition.

The elemental coverage of this study can be illustrated in
Figure 1(b), while the energy distribution of the 1,220,008 d-
center (denoted as dc) is shown in Figure 1(c), where all values
are referenced to the Fermi energy. As seen in Figure 1(c), the d-
center values span a broad energy range and can generally be
divided into four distinct domains. The d-center values in the
range of −15 eV to −10 eV are primarily associated with Sn sites.

This is due to the fully occupied 4d states and partially filled 5p
states of Sn, which shift the d-center to lower energies compared
to other elements. Similarly, Zn, as a d10 transition metal,
contributes d-center values largely within the −10 eV to −5 eV
range, with the detailed distribution on different Miller indices
shown in Figure S1. In contrast, the d-states of most other
elements fall within the energy window of approximately −5 to 2
eV. A small subset of d-center values exceeding 2 eV, from Ni,
Co, and Zn sites, are represented as outliers and originate
exclusively from a single structure: the {111} surface of ZnCoNi
with a BCC structure. This structure is shown in Figure S2, with
all the corresponding outlier sites and d-center values detailed in
Table S1. It should be noted that early transition metals often
exhibit d-center values above the Fermi level due to their largely
unoccupied d orbitals; however, this does not imply thermal
instability, as many reported thermally stable metals, inter-
metallics, and alloys based on early transition metals also show d-
centers above the Fermi level.3,28

3.2. Linear Correlation between d-Center and Local
Coordination. Inspired by the cluster expansion theory,
interactions within a disordered system can be modeled as a
linear combination of contributions from interacting atomic
clusters. In general, this approach follows the following form:

X X m J( ) ( )0= +
(1)

In this framework, Φα(σ) represents the cluster basis function,
which can commonly take the form of an indicator basis,
polynomial basis, or sinusoidal basis.11 The cluster basis
function Φα(σ) is grouped and averaged over orbits β of
symmetrically equivalent clusters to generate the correlation
functions ⟨Φα(σ)⟩α∈β.mβ is the multiplicity of the orbit β, and Jβ
stands for the effective cluster interactions, which are essentially
fitting parameters indicating the contribution from each cluster
to the final property X(σ). X0 is the constant term of a cluster
expansion fit. Here we propose that a simplified version of
cluster expansion based on atomic fraction of each element and
first nearest neighbor (1NN) pairs will work on fitting the d-
center; thus, eq 1 can be simplified as

d c J N J dc
M

i
i i

i
i
M

i
M M

0= + +
(2)

ci represents the atomic fraction of each metal in the calculated
structure, and Ji shows the contribution of each element to the d-
center.Ni

M denotes the coordination number of a given species i
that appears as a nearest neighbor (NN) to the target speciesM,
while JiM represents the contribution of species i to the shift in the
d-center of speciesM relative to the baseline value d0

M. The term
d0
M is the constant carrying all of the unconsidered interactions.

With this formulation, the d-center model can be parametrized
by doing linear regression on the complete data set of calculated
d-center values.

The cluster expansion approach has been widely used to
predict various scalar properties of alloy-based systems. The
successful application of cluster expansion to predict configura-
tional energy,29 thermal conductivity,30 volume change,31 and
band gap32 supports its feasibility for further adaptation to
predict d-center values in MPEA systems. Particularly, as shown
in eq 2, the singlet term describes the reference energy level of
the d-electron at a certain composition, in analogy to the
elemental chemical potential as being interpreted in conven-
tional cluster expansion for total energy.11,33 The singlet

Figure 1. (a) The workflow for high-throughput surface state
calculations; (b) the elemental coverage of our database; (c) the
distribution of all computed d-center values, with the Fermi energy set
as zero.
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coefficient can be interpreted as the “reference chemical
potential” of d electrons for a given metal. The pairwise term
and potential high-order term can then be used to interpret the
influence of local bonding configurations. The 1NN and 2NN
coefficients describe how interactions with first- and second-
nearest neighbors shift the d-center. A negative coefficient
indicates that the interaction stabilizes the d-center, whereas a
positive coefficient indicates destabilization. Therefore, the
values of the fitting coefficients can serve as a guideline for
further optimizing the chemical short-range order on the
surfaces of synthesized catalysts.13−15,20,34,35

The schematic of the featurization process is illustrated in
Figure 2(a). Fivefold cross-validation was applied to the

regression model to evaluate various values of the regularization
parameter in the L2 penalty term. The resulting learning curve is
shown in Figure S3, and the validation MAE for each fold across
different alpha values is summarized in Table S2. These results
help demonstrate the robustness and generalizability of the
regression model. The regression results of the final model that
has all 1,220,008 d-centers are presented in Figure 2(b), while
the results for the d-centers in the validation data set are shown
in Figure S4. The elemental dependent fitting can be found in
Figure S5, while the fitting with the full energy range can be
found in Figure S6. Impressively, all data fit well within this
linear model, yielding a mean absolute error (MAE) of 0.09 eV.
We also trained the model with L1 regularization. As shown in
Table S3 and Figure S7, L1 regularization does not surpass L2
regularization performance, except at very small penalty
strengths, where it essentially reverts to ordinary least-squares
fitting. As the penalty strength increases, L1 regularization drives
more coefficients to zero (see Table S4), undermining the
model’s physical completeness; since the feature sets are
mutually orthogonal, none should be eliminated. These results
underscore the model’s robustness and high predictive accuracy
without the need for more complex regularization schemes.

Other effects, including lattice distortion, electron transfer,
and orbital hybridization, are implicitly captured through the
cluster expansion11 of the d-center values. By expanding up to
pair clusters, the model inherently includes all physical
interactions within atomic pairs. The low MAE observed
indicates that contributions from higher-order, many-body
interactions are relatively minor, confirming that pairwise

interactions dominate the physics governing the d-center in
this system. Furthermore, by using the same feature vector, we
can also fit regression models on predicting other electronic
descriptors such as d-width and achieve reasonable accuracy, as
shown in Figure S8.

In addition to achieving numerical accuracy, the fitting
procedure also provides valuable insights into the underlying
factors that drive d-center shifts when a given metal is paired
with different species. The fitted interaction coefficients,
denoted as JiM in eq 2, are visualized in Figure 3. Most of these

coefficients are negative, indicating that compositional disorder
generally lowers the d-center values. It is important to note that
the d-center value is typically defined as the first moment of the
complete density of states (DOS) of d orbitals. Therefore, it is
related only to the shape rather than the occupancy of d orbitals.
The predominance of negative interaction coefficients suggests
that the DOS of the d orbital is up-skewed, while the centroid is
shifted downward. This phenomenon can be interpreted as a
result of favorable chemical bonding between metals in the
selected MPEAs. The formation of metal−metal bonds in these
alloys tends to lower the electronic energy levels, reflecting
increased bonding interactions. This observation aligns with the
generally negative formation energies observed in most MPEAs,
indicating that these mixed-metal systems are energetically more
stable than their pure metal counterparts.

4. DISCUSSIONS
Even though the model presented in Figure 2 shows reasonable
accuracy in capturing the d-center values, it remains uncertain
whether further improvements are possible. In this section, we
analyze in detail how surface structure and regression setup
influence the final fitting accuracy.

4.1. Structural Dependency for the General Model.
The structural orientation of surface atoms is determined by two
physical factors: the bulk structure and the Miller index. It is
therefore reasonable to hypothesize that the performance of the
model described in eq 2 may vary depending on these structural
characteristics. Figure 4(a) illustrates the three typical MPEA
bulk structures considered in this study. When the linear model

Figure 2. (a) Schematic of how the feature vector is constructed, where
the atomic fraction of each element and coordination numbers of 1NN
metal elements surrounding a central metal site are used as input
features; (b) the fitting result of all d-center values, with the orange and
brown vertical dashed lines indicating the d-center value of FCC Pt
(111) and FCC Ir (111), respectively. The data are scaled within the
range of [−4 eV, 0 eV] to zoom in on the region of particular interest for
finding sites close to Pt/Ir. Full range is shown in Figure S6. The black
dashed lines illustrate a 0.5 eV shift to a perfect fit, which is used to guide
the eye for the spread of the data.

Figure 3. Heatmap showing the fitting coefficient for contributions to
d-center values for all metals evaluated. Mg and Al do not have d-
electrons, so the corresponding rows are colored gray.
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is fitted separately for surfaces generated for each bulk structure,
only marginal improvements in MAE are observed: 0.09 eV for
all BCC, 0.08 eV for all FCC, and 0.06 eV for all HCP, as shown
in Figure 4(b), and performance on validation data is shown in
Figure S9(a). Similarly, for FCC and BCC surface slabs, multiple
Miller indices, including (110), (111), and (112), were sampled
during the high-throughput DFT calculations, as shown in
Figure 4(c). However, as shown in Figure 4(d), fitting the model
based on a specific Miller index does not yield significant
improvements in accuracy, with all MAEs remaining close to
0.08 eV. Figure S9(b) displays the performance solely on the
basis of the validation data. These results suggest that the trend
observed in Figure 2(b) is broadly applicable and largely
independent of both the bulk structure and surface orientation.
In contrast with prior reported attempts to fit various d-centers
with different physical intuitions and formulisms,36 our model
shows the first time that a universal adaptable model can be
generalized into arbitrary MPEA compositions.

4.2. Impact of Regression Method for the General
Model. In addition to surface structure, another two key factors
influencing model accuracy are the featurization and regression
setup. As shown in Figure 2(a), the model illustrated in Figure
2(b) adopts the simplest configuration by considering only
1NN. While this approach already yields reasonable results,
cluster expansion theory suggests that incorporating extended
feature vectors, such as including interactions beyond 1NN, can
generally enhance model performance. Furthermore, the model
shown in Figure 2(b) does not differentiate between 1NN atoms
located at the surface and those deeper in the bulk. As a result,
secondary effects arising from variations in the local
coordination environment are neglected. Finally, regularization
has been shown to play a crucial role in ensuring the robustness
of cluster expansion models,11 especially when the available data
are limited. All three of these factors�extended interactions,
surface/bulk distinction, and regularization�are explored, with
corresponding results summarized in Figure 5.

Figure 5(a) illustrates the possible variations in the regression
setup. First, we compared the model performance by including
or excluding the coordination number of second-nearest-

neighbor (2NN) atoms, as illustrated by the top panel. Since
the feature vector used in Figure 2 did not distinguish the atomic
environment at the surface or in the bulk, we developed an
extended feature vector that treats the same species differently
depending on its position within the surface slab (e.g., surface

Figure 4. (a) The three bulk atomic structures of our MPEA data set; (b) the parity plot by fitting the d-center independently for surfaces generated
from three bulk structures; (c) demonstration of all Miller indices presented for FCC and BCC; (d) the parity plot by fitting the d-center
independently for different surface configurations. All of the dashed diagonal lines in (b) and (d) illustrate a 0.5 eV shift to a perfect fit.

Figure 5. (a) Illustration of the top view of the 1NN (green circles) and
2NN (pink circles) of targeted atomic site (red circle) as the top panel;
the atomic structure below illustrates the side view of a surface model
with the atoms from the top row to bottom row being surface,
subsurface, and bulk; illustrations of how the feature vector is
concatenated for including different NN, and atomic sites are placed
in the lower panels. (b) Donut histogram comparing the impact of 1NN
and 2NN, as well as the surface/bulk distinction for each element. (c)
Donut histogram comparing the impact of 1NN and 2NN, as well as the
regression algorithm (least squares fitting/ L2 regularization). For both
(b) and (c) the inner shell of the histograms indicates the model
considering only 1NN; the outer shell of the histograms indicates the
model considering both 1NN and 2NN.
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site, subsurface site, or bulk site). Lastly, the comparison
between least-squares fitting and L2 regularization has also been
made. Figure 5(b) demonstrates the elemental dependency
fitting error when considering different NN setups as well as
simple or extended feature vectors. In the extended feature
vector, all atoms are categorized as surface, subsurface, or bulk
atoms according to the schematic shown in Figure 5(a), while
the simple feature vector considers atoms at all three positions
equivalently. Particularly, the bars going inward toward the inner
dashed circle show the fitting MAE when considering only 1NN,
while the bars going outward to the outer dashed circle show the
fitting MAE when considering both 1NN and 2NN. The
unmeshed bars indicate the MAE from a simple feature vector,
while the meshed bars indicate the MAE from extended feature
vectors. The inner and outer dashed circles are the maximum
fitting errors across all elements, which are set as 0.12 eV for both
1NN and 2NN. Detailed MAEs are listed in Table S5.
Therefore, it can be inferred from Figure 5(b) and Table S5
that the inclusion of 2NN slightly improves the fitting, while the
distinguishing of surface/bulk atoms does not have a significant
impact on fitting MAEs.

A similar comparison is also made in Figure 5(c), where the
inner and outer dashed circles also indicate the maximum error
from fitting across all elements. Additionally, the circle hatch
bars indicate the results from direct least-squares fitting, while
the meshed bars represent results using linear regression based
on a ridge, a type of L2 regularization. Detailed MAEs are listed
in Table S6. Similar conclusions can be drawn from Figure 5(c),
as the inclusion of 2NN has divergent roles in influencing fitting
results, while the level of regularization seems to have little
influence on the final MAE result. Based on the comparisons
made in Figure 4 and Figure 5, it is thus clearer to conclude that
even though there is still space for further improving the fitting,
the improvement may not be very substantial.

The demonstrated model shows remarkable performance in
capturing the d-center values of MPEA surfaces; it can also be
further adapted into predicting low-entropy systems, particularly
if more specialized training data are implemented. As shown in
Table S7, the model shows reasonable capability when
predicting the pure Pt. As discussed earlier, the shape of the
DOS for the d orbital is largely influenced by the skewness of the
d orbitals within the same metal, while the stability of chemical
bonds plays a significant role. The stability can be indirectly
linked to the chemical potentials of the elements, a property in
which MPEAs differ considerably from pure metals and
intermetallics. Despite the large and systematic training data
set used for MPEAs, it does not include any data from the low-
entropy regime. As a result, the model’s applicability to pure
metals and intermetallics is limited, even if they share the same
crystal structure as MPEAs.

Another important aspect that needs attention is that the
GGA level of theory is used in this work to calculate all of the d-
center values for fitting the presented model. The choice of GGA
considers the reasonable trade-off between reliability and
computational affordability. Caution is advised when trans-
ferring our fitted parameters to niche systems where GGA is
known to be less reliable, e.g., some magnetic systems with Fe,
Co, and Ni. In such cases, it is recommended to refit the model
with high-fidelity calculations or even experimental data to
capture the correct d-center values. This work provides
comprehensive support of the validity of using cluster expansion
to predict d-center values without any preference or bias on
actual quantum chemistry method. Therefore, only a modest,

system-specific data set is needed to update the coefficients,
substantially reducing the overall computational effort.

Given that the presented model already accounts for the
presence of various surface roughness (examples shown in
Figure S10), Figure 4 demonstrates that the model’s perform-
ance is not highly sensitive to either surface orientation or bulk
structure but more directly connected to the actual nearest
neighbor sites. We thus conclude that the model can be further
extended to systems with various structural imperfections and
defects, as well as nanostructures. The development of an
efficient model for predicting d-center values will also facilitate
further extensions to properties more directly related to catalytic
performance, such as overpotentials in various catalytic
reactions.

5. CONCLUSIONS
We present a general model for predicting d-center values that
applies to any MPEA surface, regardless of elemental
composition, bulk structure type, and Miller indices. With a
comprehensive data set containing 1,220,008 d-centers from
10,680 surfaces, we demonstrate that predicting d-center values
can be achieved with a simpler model than previously expected.
This study will help accelerate the rapid screening of effective
electrocatalysis.
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