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Phase Selection Rules of Multi-Principal Element Alloys

Lin Wang and Bin Ouyang*

Computational prediction of phase stability of multi-principal element alloys
(MPEAs) holds a lot of promise for rapid exploration of the enormous design
space and autonomous discovery of superior structural and functional
properties. Regardless of many plausible works that rely on phenomenological
theory and machine learning, precise prediction is still limited by insufficient
data and the lack of interpretability of some machine learning algorithms, e.g.,
convolutional neural network. In this work, a comprehensive approach is
presented, encompassing the development of a complete dataset that
contains 72 387 density functional theory calculations, as well as a predictive
global phenomenological descriptor. The phase selection descriptor, based on
atomic electronegativity and valence electron concentration, significantly
outperforms the widely used valence electron concentration, excelling in both
accuracy (with an f1 score of 63% compared to 47%) and its ability to predict
the HCP phase (0.48 recall compared to 0). The comprehensive data mining
on the global design space of 61 425 quaternary MPEAs made from 28
possible metals, together with the phenomenological theory and physical
interpretation, will set up a solid computational science foundation for
data-driven exploration of MPEAs.

1. Introduction

Multiprincipal element alloys (MPEAs) are formed by mixing
multiple elements at similar concentrations. In contrast to tradi-
tional alloys, the high configurational entropy introduced by the
multiple elements leads to the stabilization of MPEA as single-
phase solid solutions in many situations.[1–3] Since the first report
in 2004 by two groups simultaneously,[3,4] MPEAs have been ex-
tensively studied as both structural alloys and novel catalysts. Like
typical metals, many single-phase MPEAs exhibit body-centered
cubic (BCC), face-centered cubic (FCC) or hexagonal closed-
packed (HCP) structures. Different crystal structures exhibit dis-
tinct mechanical,[5–8] magnetic,[9,10] and catalytic properties[11,12]

due to variations in their atomic arrangements and bonding
characteristics.[13] Understanding the driving force behind phase
stability and designing alloys with enhanced properties is an on-
going pursuit.

L. Wang, B. Ouyang
Department of Chemistry and Biochemistry
Florida State University
Tallahassee, FL 32304, USA
E-mail: bo22b@fsu.edu

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/adma.202307860

DOI: 10.1002/adma.202307860

The compositional space of MPEAs is
enormous and impossible to enumer-
ate with combinatorial experiments and
computations. Therefore, one will need
a quantitative model to predict the most
likely phase for MPEAs. In the past,
phenomenological phase selection rules
have been attempted with valence elec-
tron concentration (VEC),[14,15] atomic
radius differences,[16,17] electronegativ-
ity difference,[18] melting points (Tm),[19]

mixing enthalpy and entropy,[16] pairwise
mixing enthalpies,[15,20] etc. In addition
to phenomenological theory, machine
learning[21–31] has been widely used for
predicting the phase selection for specific
MPEAs. There are two remaining chal-
lenges for predicting the most stable phase
for MPEAs. First, the training data sets that
establish the phenomenological and ma-
chine learning models are relatively limited,
usually including hundreds of data points
and sometimes a combination of data
with different fidelity. When applied to the
universal combinatorial space of MPEAs,

these models may fail or experience a drop in performance due
to either insufficient training or incomplete physics to capture
global trends. On the other hand, most machine learning mod-
els reported are convoluted maps between basic features and
stability metrics based on deep neural networks, often lacking
interpretability.[32–34]

In this work, we have presented a comprehensive approach,
encompassing the development of a complete dataset and pre-
dictive global phenomenological theory for phase selection rules
of MPEAs. Our work involves the construction of a density
functional theory (DFT) dataset, which covers all MPEAs with
equal molar concentrations of up to four constituent metals. The
dataset includes the entire combinatorial space of 28 metals and
three typical phases: BCC, FCC, and HCP. Through the analy-
sis of 72387 DFT relaxations, we establish the physical under-
standing of phase selection among all possible MPEA compo-
sitions. Furthermore, we developed a phenomenological theory
that predicts the lowest energy phase among BCC, FCC, and
HCP structures. With the application of symbolic machine learn-
ing, we discovered that the phenomenological physical descriptor
𝜏 = VEC × (VECstd + VEC) + 3

√
log(𝜒ave) shows extraordinary

capability for predicting lowest energy phase among BCC, FCC,
and HCP. More specifically, we find that BCC is stable at 𝜏 <

63.31, HCP is stable at 63.31 < 𝜏 < 81.21 and FCC is stable at
𝜏 > 81.21. Our presented model achieves an average f1 score of
0.63, relative to 0.47 provided by VEC rule.[14,35] Moreover, VEC
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Figure 1. a) The distribution of selected metals in periodic table, the color indicates the room temperature phases as elemental metal.[36] The room
temperature phases of Mn and Sn are none of the three phases (BCC/FCC/HCP) we emphasize here so we denote them as “other”. b) The distribution
of lowest energy phases across all equal-molar combinations of 28 metals, leads to 378 binary and 3276 ternary and 20475 quaternary alloys. c) The
stacking histogram of the formation energy (Ef) all the most stable structural form among three computed structures for all 24129 equal-molar alloy
compositions.

rule tends to miss-predict all HCP phases, but our model shows
0.46 precision and 0.48 recall for predicting HCP ground states.
By establishing universal phase selection rules based on a com-
prehensive dataset that covers the complete elemental combi-
natorial space up to quaternary systems, our work offers new
insights into the understanding of MPEAs by integrating ma-
chine learning with physical intuition. Furthermore, it estab-
lishes a solid data science foundation for data-driven design of
MPEAs.

2. Results

2.1. Phase Stability Map of all MPEAs

To enumerate all possible equal-molar alloys, we exclude all al-
kali and alkaline earth metals except for Mg, as well as elim-
inating Ga, In, Cd, Hg, and Tl because of their low melt-
ing points, which hinders the formation of entropy-stabilized
solid solutions. Tc is also excluded because it is radioactive.
As a result, 28 metals were selected to generate 378 binary,
3276 ternary, and 20475 quaternary equal-molar MPEA compo-
sitions. The room temperature phases for these metals are il-
lustrated in Figure 1a with different colors.[36] For each compo-
sition, we generated special quasi-random structure (SQS) for
BCC, FCC, and HCP structure, which yields 72387 DFT cal-
culations (details in the Experimental Section). After full DFT
relaxation on both cell shape and atomic position, some struc-
tures have significant lattice distortion while others are trans-
formed into different structures. Structure matching is thus per-
formed to map all DFT relaxed structures back into the clos-
est structural phase with rigid lattice sites.[37] More specifically,
all relaxed structures into BCC lattice, FCC lattice, HCP lattice
or other lattices as being classified by a strict tolerance of off-
lattice displacement and unit cell deformation (Note S1, Support-

ing Information). For the structures that cannot be mapped back
into the three considered phases, we group and name them as
“Other”.

Given that three basic structures (BCC, FCC, and HCP) have
been relaxed by DFT for all compositions, we can compare the
DFT computed energy to derive the lowest energy phase. The
distributions of the lowest energy phase for binary, ternary, and
quaternary MPEAs are demonstrated in Figure 1b. It is inter-
esting to see there are 109 binary alloys, 1314 ternary alloys
and 8604 quaternary alloys with the lowest energy relaxed struc-
tures failing to be matched into any of the three phases. To
show the stability of these MPEAs after being classified into
different phases, the formation energy of the lowest energy
phase of all binary, ternary, and quaternary alloys are visual-
ized with a stacking histogram as shown in Figure 1c. It can
be seen that most MPEAs have very negative formation en-
thalpy (EForm). Most of them have a formation enthalpy around
−150 meV/atom while some of them can be as low as −600
meV/atom. Such distribution implies that our analysis based
on alloy compositions shows reasonable stability and synthetic
accessibility.

2.2. Structural Origin of Mechanical Instability

As being demonstrated in Figure 1b, in many situations, the most
stable phase is classified as “Other” as the initial atomic posi-
tions are not even mechanically stable. As a result, DFT opti-
mization will transform them into something else other than the
three considered phases. More detailed statistics of relaxation-
induced structural evolutions of quaternary alloys are demon-
strated in Figure 2a. Specifically, the off-diagonal cubes indicate
the number of structures that evolve into very different struc-
tures from the initial point. It can be inferred from Figure 2a
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Figure 2. a) The statistics of structures that have phase transformation after DFT relaxation; b) Schematic summary of possible phase transforma-
tion mechanism among FCC/BCC/HCP structures; c) Atomic structure that illustrate the structural correlation and transformation pathway among
FCC/BCC/HCP phases. Blue arrows represent sliding directions. Here we use shortest atomic distance in the unit cell (denoted as (a)) as a measure of
sliding distance.

that BCC ↔ FCC and BCC ↔ HCP transitions have occurred
in many compositions while there is no observation of any
relaxation-induced FCC ↔ HCP transition. Moreover, there have
been a substantial number of structures that cannot be mapped
back into BCC/FCC/HCP lattices for all three types of initial
states.

The mechanical instability and consequential transformation
can be better understood by examining the structural correlation
among the three investigated phases, as illustrated in Figure 2b,c.
In summary, as depicted in Figure 2b, the structural transition
between BCC and FCC phases can occur through lattice distor-
tion alone, following the Bain transformation.[38] Such transfor-
mation is diffusionless, meaning it does not require an activation
barrier and can occur even during DFT relaxation. Furthermore,
BCC ↔ HCP transformation is close to Bain transformation, with
the exception that it involves a slight shift of atom planes. This
shift can potentially occur without an activation barrier if there is
a significant lattice distortion present. On the other hand, FCC
↔ HCP transformation necessitates substantial interlayer slid-
ing, which cannot occur without an activation barrier or during
DFT relaxation. Such a simple framework can completely explain
the facts in Figure 2a that (1) There is an absence of FCC ↔ HCP
transformation; (2) Much fewer structures have gone through the
BCC ↔ HCP transformation compared with BCC ↔ FCC trans-
formation. The structural correlation among these three consid-
ered phases can be better elaborated in Figure 2c. The left panel
of Figure 2c introduces the structural correlation between BCC
and FCC phases. The BCC lattice can be derived from the FCC

lattice by simply compressing the c/a ratio of the BCT lattice
from 1 to 0.71. Such compressing of lattice does not necessitate
passing through a high-energy transition state. Instead, it can
be facilitated statistically with off-lattice distortion that is com-
monly observed in HEA. The panel in the middle demonstrates
the structural correlation between FCC and HCP phases. They
are both closed-packed structures but with different stacking se-
quences, e.g., ABCABC stacking sequence for FCC and ABAB
stacking for HCP, respectively. As demonstrated by the middle
panel of Figure 2c, such transformation requires the creation
of a high-density stacking fault, which dictates a significant ac-
tivation barrier and thus cannot be observed with just DFT re-
laxations (Figure 2a). The right panel of Figure 2c presents the
structural correlation between the BCC and HCP phases. The
transformation from BCC to HCP is regarded as a two-stage pro-
cess. In the first stage, the bcc structure elongates in [110]bcc and
[11̄0]bcc directions, respectively. In the second stage, half of the
layers need to slide

√
3/6 of the distance between the two near-

est atoms to transform into HCP phase.[39] The most significant
structural change that happens during BCC ↔ HCP evolution
is in analog to Bain transformation.[38] While a slight sliding
of atom planes is also involved, it requires much smaller frac-
tion of atoms and shorter sliding distances compared to the FCC
↔ HCP transformation. As a result, this transformation can be
observed during DFT relaxation, as demonstrated in Figure 2a.
The smaller scale of atomic movement makes it more feasible
for the transformation to occur within the constraints of DFT
relaxation.
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Figure 3. a) The donut plot triangle that shows the amount of lowest energy structural phase distribution with different constituents of elements. The
lowest energy structural phase of constituent elements is used to distribute the donut plots in the triangular axis; b) Demonstration of the impact of
Al on energy difference between HCP and FCC; c) Demonstration of the impact Zn on energy difference between FCC and HCP; d) Demonstration of
the impact of valence electron concentration (VEC) on stabilizing BCC as the ground state. The green region indicates MPEAs that favor BCC phase,
whereas red region indicates MPEAs that favor FCC or HCP phase. For MPEAs with all BCC, FCC, and HCP relaxed into BCC structure, an arbitrary −250
was given to emphasize they are stable in BCC phase.

2.3. Elemental Origin of Phase Selection

A triangle plot (Figure 3a) is developed to show the influence of
elemental phase ground state on the phase selection of the qua-
ternary MPEAs. (ternary and binary alloys are shown in Figure S1
in the Supporting information). In this plot, the triangular axes
represent the fractions of FCC, HCP, or BCC elemental ground
states for the constituent elements of the MPEA. The three ver-
tices of the triangle illustrate the quaternary MPEAs that have
four FCC, HCP, or BCC elements respectively, while the three
edges indicate the cases when quaternary MPEAs have a mix-
ing of FCC/HCP elements (bottom edge), mixing of FCC/BCC
elements (left edge) and mixing of BCC/HCP elements (right
edge). Additionally, the three-donut plot in the middle indicates
the compositions that simultaneously contain BCC, FCC, and
HCP elements. It should be noted that Sn and Mn do not have
their ground states being other phases than the three considered
phases, in such analysis, we label them by one of the three phases
that shows the lowest energy, e.g., Mn as HCP and Sn as FCC re-
spectively.

Each of the donut plots in Figure 3a has demonstrated the
amount of lowest energy structures with color. Here is a sum-
mary of all interesting observations: (1) When MPEA constitutes
of only FCC metals, FCC, HCP or “Other” group shows lowest
energy but not BCC group; (2) When MPEA is only formed by
HCP metals, all four groups of structures are observed to show

lowest energy; (3) When MPEA is only formed by BCC elements,
the lowest energy structure always be BCC; (4) When there are at
least 2 BCC metals in the quaternary MPEA, BCC is the mostly
likely phase to form statistically. Such trend is absent for FCC and
HCP elements.

To gain insights into the underlying physics of the aforemen-
tioned observations, comparisons were made with controlled
groups of compounds, as depicted in Figure 3b–d. These compar-
ison groups designed and shown in Figure 3b are to understand
the phase stabilization mechanism for HCP phase, particularly
when FCC elements dominate the composition. The energy dif-
ference between HCP and FCC phase (EHCP − EFCC) is used as
the y-axis for the plot, while we have developed two groups of
MPEAs distributing in x-axis. The “BCC & FCC & Other” group
includes all MPEAs without HCP metals in their constituent met-
als, while the “FCC only” group includes MPEAs that have only
FCC metals as their constituent metals. It can be inferred from
Figure 3b that even if Al is FCC metal, the introduction of Al to
MPEAs in both groups will lead to a significant drop in EHCP −
EFCC. This indicates that the presence of Al in MPEA can energet-
ically favor HCP phase. Previous simulations and experiments
also demonstrated that the addition of Al reduces the stacking
fault energy between HCP and FCC, and the formation of HCP
structure has been observed.[40] In our calculations, 326 MPEAs
in the two groups even show neglectable or negative EHCP − EFCC
(tabulated in Table S2 in the Supporting Information). All these

Adv. Mater. 2023, 2307860 © 2024 Wiley-VCH GmbH2307860 (4 of 10)

 15214095, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202307860 by Florida State U
niversity, W

iley O
nline L

ibrary on [03/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advmat.de


www.advancedsciencenews.com www.advmat.de

Figure 4. a) The Sankey diagram that demonstrates the relaxation outcome of all lowest energy structures that cannot be mapped back to BCC/FCC/HCP;
b) Two examples of the relaxation outcome. The left panel illustrates the case when a structure will become remnants along BCC → HCP transition. The
right panel illustrates the case when a structure will be amorphous like after relaxation.

observations lead to the conclusion that Al acts as an “HCP sta-
bilizer” when cooperating with other elements.

To investigate the stabilization mechanism for FCC phases, es-
pecially when such MPEA is made from mostly HCP elements
as indicated in the lower right section of the donut triangle in
Figure 3a, the energy difference between the FCC and HCP phase
(EFCC − EHCP) is plotted on the y-axis in Figure 3c. Similar to
the case in Figure 3b, two groups of MPEAs were developed
for comparison. The “HCP Only” group includes all the alloys
only HCP metals. The “BCC & HCP & Other” group includes
all other alloys with no FCC elements. In both selected groups
of MPEAs, the presence of Zn tends to result in lower EFCC −
EHCP values, which indicates “Zn” could act as an FCC stabi-
lizer. Moreover, it has been found that 135 alloys show negative
EFCC − EHCP, which is tabulated in Table S3 in the Supporting
Information.

To comprehend the stabilization mechanism of BCC phase,
the valence electron concentration (VEC) is identified as a good
descriptor. We have plotted the energy difference EBCC − EFCC/HCP
(the lower energy between FCC and HCP phase was picked) as
a function of VEC in Figure 3d. The 2684 alloys that exhibit a
negative value for EBCC − EFCC/HCP have been indicated by green.
It is worth mentioning that there are 798 MPEAs with all three
initial structures (BCC, FCC, and HCP) relaxed into BCC struc-
ture. These MPEAs do not possess values for EBCC − EFCC/HCP
as FCC and HCP are mechanically unstable. Therefore, an arbi-
trary value of −250 meV/atom is assigned to represent this group
of MPEAs, depicted with the same plotting style in the left panel
of Figure 4d with green color. It can be observed in Figure 4d that
MPEAs with lower VEC in general tend to stabilize BCC phase,
whereas the ones with higher VEC tend to stabilize at FCC/HCP

phase. However, it is also worth mentioning that VEC does not
work perfectly for distinguishing BCC MPEAs from the rest, as
many MPEA with EBCC − EFCC/HCP > 0 also show comparably low
VEC as shown in both Figure 4d and Note S2 in the Supporting
Information.

2.4. Understand the Nonclassical Ground State

To form more insights on the materials categorized into “Other”
group, we developed structure-matching criteria to further clas-
sify those structures. For classifying the relaxed structures back
to BCC/FCC/HCP and “Other” group, we set a strict tolerance to
map structures back into BCC/FCC/HCP phases (Table S1, Sup-
porting Information). The outliers that are grouped as “Other”
group can be further classified by extending the tolerance in
off-lattice displacement (stol) and lattice vector length (ltol). The
Sankey diagram shown in Figure 4a provides an overview of
the classification process of “Other” group. To form such clas-
sifications, we gradually extend the stol and ltol values while
regrouping the structures based on the threshold that maps
them back into the three basic structures (BCC/FCC/HCP). Ini-
tially, we extend stol value up to 0.5, while maintaining ltol at
the minimum threshold. Consequently, part of the structures in
the “Other” group can be mapped into three basic structures
(BCC/FCC/HCP). These structures can be regarded as a rem-
nant of the initial structure, as they largely preserve the crys-
talline symmetry, albeit with significant off-lattice displacement.
An illustration of such a structure (HfNbIrOs) is presented in
the left panel of Figure 4b. Subsequently, we attempt to map
the remaining structures by extending ltol to 0.5 while keeping
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Figure 5. a) The distribution of lowest energy phase as a 3D function of normalized radius, electronegativity, and valence electron concentration plotted in
the style of Van Arkle-Ketelaar (VAK) triangle. The normalized details are presented in Note S3 in the Supporting Information; The histogram distribution
of normalized data in each axis is also presented at three axes of this triangular plot; b) The distribution of 2395 validation data for decision tree training
as a function of standard deviation of electronegativity (𝜒std), all data are classified as FCC; c) The distribution of 2395 validation data for decision tree
training as a function of standard deviation of atomic radius (rstd), all data are classified as FCC; d) The distribution of 2395 validation data as a function
of VEC, the dashed lines are decision boundaries that separate BCC with FCC from decision tree classification.

stol at its minimum value of 0.16. However, no structure can
be mapped back to the BCC/FCC/HCP. Ultimately, by extend-
ing both stol and ltol values to 0.5, all the remaining structures
can be mapped back into BCC/FCC/HCP. These structures can
be regarded as intermediates during amorphization process, as
they completely lose their lattice symmetry and periodicity. One
example of such a structure is demonstrated in the right panel of
Figure 4b.

By applying the classification method mentioned above, 3447,
1204, and 2115 structures are classified as remnants of BCC,
HCP, or FCC phase respectively. Additionally, after increasing
the stol value, 29 structures were found to match both the
BCC and HCP phases. These structures can be regarded as
intermediate states of BCC ↔ HCP transformation. The pres-
ence of such an intermediate can be explained by the transfor-
mation mechanism shown in Figure 2c. It suggests that BCC
↔ HCP transition involves a small energy barrier for shift-
ing atomic layers (Figure 2c), causing DFT relaxation to stop
at only an intermediate state that is local energy minimum.
Conversely, no structure is observed to map simultaneously to
both BCC and FCC or FCC and HCP. This can be understood
again by referring to the transformation mechanism demon-
strated in Figure 2c: the BCC ↔ FCC transition can occur with-
out a barrier, allowing the DFT relaxation to directly transform
the structure; while the FCC ↔ HCP transition requires sig-
nificant sliding of atoms (large barrier), which inhibits the for-
mation of intermediate states. Lastly, 1809 structures are iden-
tified as amorphous intermediates, suggesting that these com-
positions may not crystallize as a single phase or will crystal-
lize into a completely different phase unrelated to BCC/FCC
/HCP.

3. Discussion

3.1. Van Arkle-Ketelaar Triangle of Phase Selection

In addition to the data mining and data analysis of our dataset, we
also want to form phenomenological design principles for phase
selection in MPEA. Three atomic properties, e.g., standard devia-
tion of atomic radius (rstd), standard deviation of electronegativity
(𝜒 std), and valence electron concentration (VEC) were selected as
the three basic descriptors that are responsible for phase stability.
The selection of rstd and 𝜒 std is based on the intuition of Hume–
Rothery rule,[41,42] while VEC is widely used for phase classifica-
tion of high entropy alloys.[14] Figure 5a presents a plot follow-
ing the fashion of Van Arkle-Ketelaar (VAK) triangle that illus-
trates the lowest energy structure for each composition. The tri-
angular axes represent the three elemental properties, (e.g., rstd,
𝜒 std, VEC), while the distributions of the lowest energy phases
are plotted (details in Note S3 in the Supporting Information).
In addition to this plot, we also include probability distribution
of four types of structures as 1D functions of each descriptor, on
top of three edges of the triangular plot and Figure S3 in the Sup-
porting Information. From Figure 5a, it is evident that the data
points representing four groups of phases are intricately inter-
twined. Although there appears to be preference of rstd, 𝜒 std, and
VEC, neither Hume–Rothery rules nor VEC alone can effectively
separate the four groups of MPEAs.

To assess the predicting capability of the 1D descriptors
in determining different phases, we applied the decision tree
algorithm[43] on these descriptors individually. For all classifica-
tion models, the training set consisted of 80% of the quaternary
alloys with the lowest energy phases classified as BCC, FCC, or
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HCP. The decision tree algorithm is used to identify the bound-
ary, whereas the rest 20% were used to evaluate the performance
using the f1 score (Note S4, Supporting Information), the clas-
sification metrics are presented in Table S4 in the Supporting
Information. The results revealed that when using 𝜒 std and rstd
as descriptors, the decision tree model[43] classified all MPEAs
into the FCC phase, with the distribution shown in Figure 5b,c
and Figure S4a,b in the Supporting Information. This indicates
that the Hume–Rothery rule[41,42] alone cannot be used for pre-
dicting phase preference. On the other hand, the decision tree
modeling[43] utilizing VEC as a descriptor could reasonably dif-
ferentiate BCC and FCC phases, with a boundary value of VEC =
6.88. However, such a model will predict all HCP phase into ei-
ther BCC or FCC (Figure 5d; Figure S4c, Supporting Informa-
tion) to maximize f1 score. To conclude, none of these three basic
descriptors proved to be effective tools for accurately predicting
the formed phase of MPEAs.

Moreover, it is important to consider the significant roles that
temperature and lattice distortion play in determining the se-
lection of phases. In particular, temperature contributes to both
vibrational and configurational entropy in MPEAs. Neverthe-
less, the impact of configurational entropy is generally negligi-
ble (except when short-range order varies) since we are primar-
ily discussing phase stability within the same composition. At
the same time, the influence of vibrational entropy is quite mys-
terious and challenging, often regarded to be relatively limited
on changing phase stability but there also have been abnormal
observations.[44] As for lattice distortion, two models used for
characterizing lattice distortion, an average off-lattice displace-
ment (shown in Figure S5a in the Supporting Information) and
the atomic size difference parameter 𝛿[16] (shown in Figure S5b
in the Supporting Information) are used to characterize distor-
tion. The difficulty to obtain average off-lattice distortion from
both DFT relaxation and experimental measurement as well as
the unclear boundaries among four ground state structures limit
lattice distortion in working as a practical descriptor.

3.2. Symbolic Machine Learning Derived Phase Selection Rules

To develop a new phenomenological theory that can effec-
tively identify the preferred phase for MPEAs, we combined
sure independence screening (SIS)[45–47] with the decision tree
algorithm[43] to explore a better phenomenological model for
searching more meaningful phenomenological descriptor. We
performed an 80–20 stratified split of 11871 quaternary alloys
data set that are labeled as BCC, FCC, or HCP. Six basic atomic
properties (average and standard deviation of VEC, radius and
electronegativity, e.g., VEC, VECstd, rave, rstd, 𝜒ave, 𝜒 std) are con-
sidered together along with twelve mathematical operators (“+”,
“−”, “ × ”, “÷”, “exp”, “log”, ‘x−1’, “x2”, ‘x3’, “x−2”, ‘x−3’, “|x|”) to
generate a total of 54468418 candidate descriptors using SIS. To
make the descriptor physically meaningful, we applied dimen-
sionless treatment to all six basic descriptors (details in Note S5
in the Supporting Information). The top 50 000 1D descriptors
generated by SISSO were selected to find a boundary using a de-
cision tree model. The f1 score and boundaries among the three-
phase classifications were determined by the decision tree. The
best descriptor, 𝜏, with the highest f1 score was selected, with the

formula defined as: 𝜏 = VEC × (VECstd + VEC) + 3
√

log(𝜒ave),
which is the first machine-learnt phenomenological model for
MPEA phase selection. According to this descriptor, the stability
regions for the three phases are as follows: BCC is stable when 𝜏

< 63.31, HCP is stable when 63.31 < 𝜏 < 81.21, and FCC is stable
when 𝜏 > 81.21.

The validation dataset consisting of 2375 validation data, the
widely used VEC descriptor successfully labeled 72% of the BCC
phase and 56% of the FCC phase correctly but did not identify any
samples as HCP phase. On the other hand, our descriptor 𝜏 cor-
rectly identified 74% of the BCC phase, 72% of the FCC phase
and 46% of the HCP phase. The notable improvement in pre-
dicting the HCP phase, with precision increasing from 0 to 0.46
and recall increasing from 0 to 0.48, indicates the effectiveness
of our new descriptor. Additionally, the overall f1 score increased
from 0.47 to 0.63 when compared with VEC rules (all classifica-
tion metrics are listed in Table S4 in the Supporting Information).
These results demonstrate that our new descriptor can be serve
as an effective phenomenological model for predicting thermo-
dynamically favored phases of MPEAs.

The symbolic machine learning identified descriptor can be
interpreted as a combination of impacts from VEC and elec-
tronegativity. Figure 6c shows the term of 3

√
log(𝜒ave) coupled

with VEC × (VEC + VECstd) can effectively separate most of the
BCC phases from HCP phases, while VEC × (VEC + VECstd)
can effectively separate FCC from BCC phases (Figure 6d). Both
terms are important as 3

√
log(𝜒ave) alone cannot separate FCC

from HCP (Figure S6a, Supporting Information). This implies
that the phase preference between BCC and HCP of the same
VEC is primarily governed by average electronegativity (Figure
S6b, Supporting Information), while the phase selection between
FCC and HCP is predominantly related to the valence electron
concentration.

At the same time, to avoid the possible misclassification in-
duced by DFT calculation error, we introduced an energy bound-
ary of 10 meV/atom between the most and second stable phases.
If the energy difference exceeds 10 meV/atom, it is considered
that the DFT calculations can capture the experimental ground
state more reliably. We further refine the validation dataset by
including only MPEAs with the Elowest − Esecond_lowest < −10
meV/atom. The reduced dataset consisted of 1002 samples, and
the predicted metrics are shown in Table S5 in the Supporting
Information. The f1 score remained similar to the case with com-
plete validation data, which validates that our phenomenological
should not be influenced by potential DFT errors and will be a
reliable predictor for experiments.

To attempt better performance, we also expanded the descrip-
tor to two dimensions, as detailed in Note S6 in the Supporting
Information. The best 2D descriptor identified was (𝜏, VEC +
VEC2 + 3

√
log(𝜒ave)) (Figure S7, Supporting Information), with

an overall f1 score 0.66 on the 2395 validation data set. The
classification metric of the 2D descriptor can be found in Table
S6 in the Supporting Information. This is regarded as only a
marginal increase in performance but significantly increases
the complexity of both predicting model and decision bound-
ary. Therefore, we conclude that the 1D feature 𝜏, and 1D de-
cision boundary are the best phenomenological model we have
found.
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Figure 6. In (a) and (b), a decision tree classifier determines the boundary between BCC and HCP phase, and between HCP and FCC phase. The green,
blue and yellow shaded regions are the predicted space for BCC, FCC and HCP phase. a) The distribution of all the training data as a function of descriptor
𝜏. b) The distribution of all the validation data as a function of descriptor 𝜏. c) The distribution MPEAs with BCC and HCP phase as a function of VEC ×
(VEC + VECstd) and 3

√
log(𝜒ave), showing the data in the central region with higher density. d) The distribution MPEAs with FCC and HCP phase as a

function of VEC × (VEC + VECstd).

3.3. Phase Selections Rules and Design Strategy

To design materials with specific crystal structures, different
strategies can be employed as follows. The mixing of BCC met-
als will always prefer BCC structure energetically. There is no ex-
ception observed from our calculation. At the same time, BCC
can always be stabilized in the lower VEC region. Therefore, to
design a BCC MPEA composition, a straightforward way is to
ensure enough BCC elements in the compounds and lower the
VEC.

Notably, the strategy for designing MPEA with HCP struc-
ture is to contain more natural HCP elements and avoid
Zn which works as an FCC stabilizer. Among all HCP met-
als, Os, Ru, Re, and Co are the top recommended elements,
with 1084, 983, 890, and 673 occurrences, respectively, among
3808 binary, ternary, and quaternary alloys with HCP struc-
tures. Similarly, the design of MPEA with FCC structure is
to combine more natural FCC elements (prioritize elements
like Au, Pt, and Pd, with 1640, 1578, and 1553 composi-
tions containing these elements among 6088 computed bi-
nary, ternary, and quaternary FCC alloys) and avoid Al (HCP
stabilizer).

Most importantly, our phenomenological descriptor from sym-
bolic machine learning can work as a predictive tool that inte-
grates all the above design principles, as it picks up the influ-
ences of valence electron concentration (VEC) and electronega-
tive while forming a phenomenological model that can be used
by any MPEA to estimate stability with just plug of VEC and elec-
tronegativity.

4. Conclusion

We have successfully developed and presented the first compre-
hensive dataset encompassing all possible equal-molar multiple
principal element alloys (MPEAs). This dataset serves as a valu-
able resource for studying MPEAs and understanding their phase
selection behavior. Furthermore, we have conducted a detailed in-
terpretation of the phase selection rules governing these alloys.
In addition, we have employed symbolic machine learning tech-
niques to propose a phenomenological model that outperform
significantly of the commonly used valence electron concentra-
tion criterion. Our model not only achieves better performance
in predicting phase preferences but also uncovers new insights
into the underlying physics of phase selection in MPEAs.

5. Experimental Section
First-principles total energies calculations were performed with the Vi-
enna ab initio simulation package (VASP) using a plane-wave basis set.[48]

Projector augmented-wave[49,50] potentials with a kinetic energy cutoff of
520 eV and the exchange-correlation form in the Perdew–Burke–Ernzerhof
generalized gradient approximation (GGA-PBE)[51] were employed in all
the structural optimizations and total-energy calculations. For all the cal-
culations, a reciprocal space discretization of 25 k-points per Å−1 was ap-
plied, and the convergence criteria were set as 10−6 eV for electronic iter-
ations and 0.02 eV Å−1 for ionic iterations.

Special quasi-random structures (SQS)[52] were used to represent the
fully disordered states of all alloys studied. In terms of composition, all
possibilities of binary, ternary, and quaternary compositions were enumer-
ated with equal-molar concentrations with from 28 selected metals, with

Adv. Mater. 2023, 2307860 © 2024 Wiley-VCH GmbH2307860 (8 of 10)

 15214095, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202307860 by Florida State U
niversity, W

iley O
nline L

ibrary on [03/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advmat.de


www.advancedsciencenews.com www.advmat.de

atomic configurations shown in Figure S8 in the Supporting Information.
That leads to 378 binary alloy compositions, 3276 ternary alloy composi-
tions and 20475 quaternary alloy compositions. For each of the alloy com-
position, the structure models of BCC, FCC, and HCP, respectively, were
created. The three lattice vectors for supercell are [111], [11̄0], and [112̄] for
BCC and FCC structure respectively. For both BCC/FCC structures, 2 × 4
× 2 supercell of the defined unit cell was created, while for HCP structure,
a 4 × 4 × 3 supercell of the conventional HCP cell was used. There were
96 atoms for all three types of crystal structures.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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