
Computational Materials Science 230 (2023) 112513

0927-0256/© 2023 Elsevier B.V. All rights reserved.

Data driven design of compositionally complex energy materials 

Lin Wang, Zhengda He, Bin Ouyang * 

Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32304, USA   

A R T I C L E  I N F O   

Keywords: 
Compositionally complex energy materials 
Predictive synthesis 
Short-range order 
Machine learning 

A B S T R A C T   

Compositionally complex materials have emerged as new frontier for sustainable energy storage and conversion. 
There are many unique features of compositional complex energy materials (CCEMs), include but not limited to 
less dependency of critical elements, the potential for enhanced ionic conduction, and the capability to prevent 
chemo-mechanical degradation. However, the design space of CCEMs is intricate due to higher dimensionality of 
compositional space, as well as convoluted interplay between long range order and short-range structures. This 
review aims at providing a concise summation of research frontier in CCEMs, covering aspects from synthesis, 
manipulation of local structures and property control. Given the rapid advancement of the battery field in recent 
years, this review will particularly emphasize on battery related CCEMs as a key area of representation. 
Furthermore, the common challenges and benefits of CCEMs will also be extrapolated to other fields of energy 
storage and conversion. Among the various prospects for utilizing data science in studying CCEMs, this work will 
primarily concentrate on the physical interpretation based on massive data generated by high-throughput 
computation. However, it will also encompass the cutting-edge progress of machine learning algorithms and 
their potential applications in the study of CCEMs.   

1. Introduction 

Compositionally complex materials refer to materials with multiple 
components and certain degree of disorder. These materials encompass 
not only high entropy alloys and ceramics, but also inorganic materials 
that have multiple principle elements. The existence of compositionally 
complex materials challenges the Pauling’s fifth rule, e.g., the rule of 
parsimony [1] as well as extend the Hume-Rothery rules [2]. Such 
materials are usually stabilized by entropy (both configurational and 
vibrational), such as the case of high entropy materials and (or) special 
bond topology. The high entropy material field is initially driven by the 
great advancement of high entropy alloys [3] and structural ceramics 
[4]. Later, increasing attentions have been attracted for applying 
compositionally complex materials for clean energy applications. 
However, in contrast with compositionally complex structural materials, 
the understanding of the underlying mechanisms and the role of data 
science in the design of compositionally complex energy materials 
(CCEMs) remains notably scarce. 

Regardless of the limited understanding so far for CCEM, this field is 
rising at horizon with multiple insightful research angles emerging, 
including promotion of ion conductivity [5–8], reduction of volumetric 
change during electrochemical cycling [9–11], as well as ease or 

elimination of reliance on critical metals [5,8,12]. The applications of 
CCEMs have spread into designing of battery materials [5,8], catalysts 
[13], thermoelectricity [14] and recently also into optoelectronic ma-
terials [15]. Despite the emerging promises on energy storage and 
conversion, the data driven design of CCEM is challenging, not only due 
to much larger compositional space as well as complex reaction 
pathway, but also the potential existence of various local structures and 
short-range structural features. In this review, we will summarize 
several key topics on designing compositionally complex materials for 
energy applications, as well as utilizing data science tools for exploring 
the structure–property-synthesis relationship of CCEMs. Particularly, we 
will concentrate on summarizing the important discovery for energy 
storage applications, and then extrapolate the underlying physics into 
other fields of energy applications. Moreover, it is worth noting that 
there are limited machine learning work focusing on CCEMs in contrast 
to physical interpretation from high throughput computation. This re-
view will thus emphasize more on presenting the underlying physical 
intuitions but will also cover the potential opportunities in terms of 
machine learning. In the end, outlook for coming research frontier in 
this field will also be presented. 
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2. Unique feature of compositionally complex energy materials 

The uniqueness of CCEM can be represented by several recently 
established concepts. The first concept is that the disordering in CCEM 
can potentially facilitate ion diffusion. The absence of principal element 
in such materials prevents the presence of a dominating coordination 
environment, leading to diverse ensemble of local environments. The 
diverse local environment can potentially provide optimal ion diffusion 
network by engineering the chemical short-range order [5–8]. Such 
mechanistic understanding has inspired rapid development of superi-
onic conductors as well as high-rate materials for energy storage ap-
plications [5–8]. As one example, commercialized Li-ion battery 
cathodes are dominated by Co and Ni based layered oxides, as layered 
structure with other metals will have migration issues which prohibit 
the stable cycle of cathodes [16]. However, when disordering and 
multiple element are cooperated into such materials, the ionic conduc-
tion mechanism will change and rely only on local structures [17]. As 
being demonstrated in Fig. 1(a), the ion diffusion is happening through 
local structure called “0TM” channel, while the first electrochemically 
active material with this type is demonstrated by Li1.211Mo0.467Cr0.3O2 
(right panel of Fig. 1(a)) [14]. Moreover, with increasing number of 
elements, the local atomic ordering can be further optimized and lead to 
even better rate performance [8]. In addition to battery electrode 

application, it has also been found that the lattice distortion in CCEM 
can also enhance ionic conduction [5]. This is due to the perturbation of 
energy landscape because of lattice distortion, which facilitate the ion 
percolation with low activation barrier (Fig. 1(b)). Such a perturbation 
can lead to multicomponent superionic conductors that have orders of 
magnitude higher ionic conductivity than any of its single component 
counterpart, which is also shown in Fig. 1(b). 

Additionally, the diverse local structures means that the functional 
behavior of CCEMs relies not so much on specific metals but on the 
collective ensemble effect and the interconnectivity of distinct bonding 
configurations. Consequently, the efficacy of a CCEM hinges less on 
critical metals, particularly when juxtaposed with typical binary or 
ternary energy materials [5,8]. Such characteristic introduces a new 
strategy for resolving supply chain apprehension concerning energy 
storage and conversion, particularly within the content of rapid elec-
trification process. To give a few examples, consider the instance of 
commercialized Li-ion battery cathodes, which predominantly consist of 
cobalt (Co) and nickel (Ni) based layered oxides. These materials, 
however, suffer from limited production capabilities and a constrained 
supplier base [18]. Conversely, through the deliberate design of CCEMs, 
the reliance on Co and Ni can be significantly curtailed, or even elimi-
nated entirely. For example, the reported Li1.3Mn2+

0.1 
Co2+

0.1Mn3+
0.1Cr3+

0.1Ti0.1Nb0.2O1.7F0.3 has only 5 % Co and no Ni, the 

Fig. 1. (a) The diffusion pathway of Li in disordered rocksalt cathode and the critical local structure with only Li in tetrahedron vertices (0TM channel), the right 
panel shows the first electrochemical active material presented experimentally under such concept [17]; (b) The first panel from the left shows the schematic 
demonstration of the energy landscape with and without lattice distortion, the second panel from left shows the idea of percolation among lattice sites with similar 
energy. The third panel from the left shows the DFT calculated Li percolation for the prototype materials LiTi2(PO4)3. The fourth panel from the left illustrates the 
experimental verification of fact that mixing of multiple principle elements can increase ionic conductivity by orders of magnitudes [5]; (c) The computational 
evidence that shows the multiple principle element effect can distribute broadly of the adsorption energy of molecules [12]; (d) Experimentally reported materials 
that shows almost zero volumetric change during electrochemical cycling. “This work” indicates the material composition of LiNi0.8Mn0.13Ti0.02Mg0.02Nb0.01Mo0.02O2 
[10]; (e) The table that summarize the partial mole volume change of different materials that are frequently investigated as Li-ion battery cathodes [9]. 
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materials can surpass the capacity of commercialized battery capacity 
while shows the capability of fast charge in less than 10 min [8]. 
Moreover, it has been demonstrated by Thomas et al. [12], that by 
designing CCEM, it will effectively distribute the adsorption energy of 
molecules, shown in Fig. 1(c), which provide potential of reaching 
optimal catalytic performance with minimized noble metals [10]. 

Last but not the least, one other special feature of CCEM is the lack of 
collective volumetric change due to disordering. This is beneficial for 
many energy storage applications as less collective volumetric change 
can lead to release of chemo-mechanical degradation during the cycling 
of energy devices. Moreover, due to disordering and dilution of domi-
nating metal redox, CCEM can be designed to show very little volumetric 
change. As being demonstrated by Fig. 1(d), the volumetric change of 
LiNi0.8Mn0.13Ti0.02Mg0.02Nb0.01Mo0.02O2 can be greatly minimized 
when multiple elements are cooperated into the cation sites. Moreover, 
the mechanisms governing the influence of lattice disorder on volu-
metric changes during electrochemical cycling have been thoroughly 
discussed by Zhao et al. [9,11]. From such design principle, Zhao et al., 
have both predicted and experimentally synthesized several multi- 
component materials with low volumetric change during electro-
chemical cycling in the compositional space of Li-V-Nb-O-F [11]. 
Moreover, the idea of enhancing disorder in reducing volumetric change 
is also further supported by Konuma et al. [19], materials engineered 
within the Li-V-Ti-O-F space shows extraordinary electrochemical 
performance. 

3. High throughput screening and synthetic accessibility 

Accompanied by the great potential of using compositional complex 
energy materials (CCEM), understanding of synthetic accessibility of 
such materials became critical as such materials usually have larger 
chemical and synthesis space due to its multicomponent composition 
and disordered structure. The exploration of synthetic accessibility of 
CCEMs can be decomposed into three parts, shown in Fig. 2, e.g., (a) the 
identification of materials with low thermodynamic driving force for 
decomposition; (b) the design of viable precursors that tailors the re-
action pathway; (c) the choose of appropriate synthesis conditions. 

To determine the thermodynamic driving force for decomposition, 
compositional phase diagrams are usually utilized to be coupled with 
high throughput density function theory calculations [8,20]. The 
establishment of compositional phase diagrams is mathematically 
convex hull optimization, which involves the enumeration of all known 
materials, particularly ground states in a certain compositional space. 
The convex envelope of lowest energy phases from density function 
theory (DFT) calculation is, by definition, the ground state of the 
compositional space at 0 K. Therefore, the thermodynamic driving force 

of such phase to decompose can then be used to estimate relative 
metastability of materials. Such compositional phase diagram is not only 
useful to estimate materials stability at low temperature and room 
temperature but can also be predictive for estimating materials stability 
at high temperature with simple assessment for entropy [8,20]. The 
capability of transferring compositional phase diagram across different 
temperature ranges and other state variables can be supported by sys-
tematic evaluations of all reported inorganic materials from inorganic 
crystallography structure database (ICSD) [21,22]. With such theoret-
ical foundation established, the compositional phase diagram has been 
applied broadly and enabled quick assessment of synthetic accessibility. 

Together with the development of automated high throughput 
computational workflow [23–25], the past decade has witnessed many 
work that enumerate the complete combinatorial space across the pe-
riodic table for various types of materials [8,20,26,27]. Taking two high 
throughput screening heatmaps as examples, the NASICON stability 
heatmap [20] (Fig. 3 (a)) and the high entropy disordered rocksalt (HE- 
DRX) heatmap [8] (Fig. 3(b)). In the NASICON case, a high throughput 
screening of 3881 NASICON compositions with 21 metals and three 
types of polyanions have been performed that screens all possible 
chemistry that can potentially be introduced into NASICON structure 
and make it a superionic Na-ion conductor. Such a screen predicts 396 
new NASICON compositions that is likely to be synthetic accessible, 
which triples the reported NASICON compositions [20]. Moreover, for 
the case of HE-DRX, 7965 compounds from 23 cations in a prototype 
formula Li1.3TM0.7O1.7F0.3 are screened, which leads to the discovery 
that high entropy will generally lead to less chemical short-range order 
in DRX structure. The capability of applying such approaches provide a 
quick solution to the task of finding a needle under the sea, as hypothetic 
compounds with low Ehull value is usually the minority of the complete 
dataset [8,20,26,27]. Therefore, the phase diagram tools greatly facili-
tate the quick identification of promising compositions. 

In addition to the thermodynamic driving force, precursor is the most 
widely used experimental handle for attempting new compounds 
[28–38]. Different choices of precursor set up the starting points of 
energy landscape for chemical reaction [30]. Consequently, different 
precursors lead to the formation of various intermediate states before 
reaching the thermodynamic ground states [30,31,36–38]. The 
appearance of different intermediate states thus offer potential of 
“freezing” a metastable state by stopping the chemical reaction or 
reducing the kinetic reaction rate. In contrast with the organic synthesis, 
where retrosynthesis is well established [39] so that many reaction 
pathways and reaction intermediates can be well predicted, the reaction 
pathway and potential intermediate is largely unknown for inorganic 
synthesis. 

Recently, theoretical hypothesis has emerged that predicts the re-

Fig. 2. Schematics of the computational driven inverse design of CCEM; (a) High throughput materials screening; (b) Phase diagram cooperating realistic synthesis 
conditions; (c) Prediction of chemical reaction pathways. 
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action pathway with different choice of precursors. One example of such 
hypothesis is the “max ΔG” theory [30,31,37,38], which propose that 
many solid-state reactions will first form the phase with largest ther-
modynamic driving force at the convex hull. As being shown by Fig. 4 
(a), the “max ΔG” theory assumes that solid-state reaction usually 
nucleate at interfaces with small thickness so that the bulk stoichiometry 

will be irrelevant to the product generated after solid-state reaction. 
Instead, the first phase formed will usually be the phase that has the 
deepest formation energy in the reaction convex hull. There have been 
quite a few works which support the validity of “max ΔG” theory at least 
for several categories of solid-state reactions, which are demonstrated in 
Fig. 4(b)–(e). It has been found out that for all four groups of synthesis 

Fig. 3. Examples of element compatibility map of (a) NASICON [20] with prototype formula of NaxMyM’2-y(AO4)z(BO4)3-z. The colormap on bottom left triangle 
indicates the computed Ehull values while the colormap on top right tri-angle indicates the probably of finding an synthetic accessible NASICON composition (Ehull – 
SIdealT(1000 K) ≤ 0) with two specific metals; (b) High entropy disordered rocksalt [8] with six transition metals in the prototype formula Li1.3M0.7O1.7F0.3. The color 
map indicated the average disordering temperature, which is defined as Ehull value of the special quasi random structure (SQS) at specific temperature. 

Fig. 4. (a) Schematic of the “max-Δ G” hypothesis taking a stoichiometry of A:B = 2:1 as one example; The precursor tailored reaction pathway at different synthesis 
conditions for (b) The synthesis of NaCoO2 [27]; (c) The synthesis of YB2Cu3O6+x [28]; (d) The synthesis of Li1.2Mn0.4Ti0.4O1.6F0.4 [34]; (e) The synthesis of 
MgCr2S4 [35]. 
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attempts, the change of precursor will effectively tailor the synthetic 
reaction pathway. More specifically, in the case of synthesizing NaCoO2 
(Fig. 4(b)), the metastable O3-NaCoO2 will be formed if switching from 
the classic Na2CO3 precursor to Na2O2 or Na2O, as the elevation of Na 
chemical potential will effective change the synthesis convex hull which 
leads to the formation of Na rich O3 phase rather than the ground state 
[30]. Similar observation has also been observed by Miura et al. [31] in 
the case of synthesizing perovskite based YB2Cu3O6+x, it has been find 
that the utilization of BaO2 rather than BaCO3 will effectively increase 

the reactivity, which enhance the pair-wise reaction and accelerate 
greatly of the formation of targeted YB2Cu3O6+x phase with neglected 
impurities (Fig. 4(c)). On the other hand, the “max Δ G” theory is also 
used as a computational descriptor for high throughput screening of 
potential precursors, Szymanski and Zeng et al. [37] have designed a 
variety of potential precursors with synthetic verifications (Fig. 4(d)), 
which paves in-depth understanding of principles for maximizing F 
solubility in disordered rocksalt based Li-ion battery cathodes [37]. 
Moreover, Miura et al. [31] have found that the utilization of elemental 

Fig. 5. (a) The impact of cooling rate in cation ordering and electrochemical properties of disordered rocksalt cathode materials [40]; (b) The impact of curvature on 
phase stability of low dimensional transition metal dichalcogenides [42]; (c) The impact of biaxial strain coupled with electron doping on phase stability of low 
dimensional transition metal dichalcogenides [46]; (d) The impact of interfacial transfer coupled with biaxial strain on phase stability of low dimensional transition 
metal dichalcogenides [44]; (e) The impact of interfacial charge transfer on phase stability of low dimensional transition metal dichalcogenides [43]. 
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phase as precursor, in contrast to the conventional binary sulfide and 
chloride precursors, will establish an “empty” convex hull that get rid of 
many typical impurities compared with the standard recipe of synthe-
sizing MgCr2S4 [38], (Fig. 4(e)). 

The synthetic accessibility of CCEM is also highly depending on 
synthesis conditions. Depends on the type of synthesis method, 
computational modeling can provide instructions on actual synthesis 
conditions through quantitative or rudimentary phase diagrams 
[6,30,40–48]. The construction of synthesis phase diagram can be 
regarded as a Legendre transformation of the compositional phase dia-
gram that is directly computed from DFT calculations [22,49]. It will 
thus require the estimation of remanent contribution of real synthesis 
conditions to the free energy of the synthesis reaction. Some of the 
representative synthesis conditions can be pH, redox potential, and 
particle size in the case of aqueous synthesis; epitaxy strain, interfacial 
charge transfer and curvature in the case of thin film growth; as well as 
temperature and mechanical deformation in the case of solid-state 
synthesis. For all these types of the conventional synthesis method, 
phase diagrams under realistic synthesis conditions have shown great 
potential in calibrating the synthesis window of specific compounds. 

The synthesis phase diagram can be demonstrated by the examples in 
Fig. 5. As being shown by Fig. 5(a), the cooling speed can be used as an 
effective tool for tailoring the disordered phases for solid state synthesis 
of disordered rocksalt Li-ion battery cathode materials [37]. Different 

cooling rate can lead to very different rate performance as shown in the 
right panel of Fig. 5(a). In addition to typical synthesis phase diagram, 
exotic phase diagrams can also be established for exploring novel syn-
thesis space. Specifically, the influence of curvature has been explored as 
potential synthesis handles during epitaxy growth (Fig. 5(b)) of transi-
tion metal dichalcogenides have been investigated [39] as shown in 
Fig. 5(b); the elastic strain, on the other hand, can be coupled with 
electrostatic gating to control the 2H → 1 T (1 T’ and 1 T’’) structural 
phase transformation [43] (Fig. 5(c)). Moreover, elastic strain can also 
be coupled with different kind of interfaces, including low dimensional 
interfaces arise from heterostructures [41] (Fig. 5(d)) as well as sub-
strate induced interfacial charge transfer [40] (Fig. 5(e)). 

4. Chemical short-range order and local structure engineering 

One unique structure feature of CCEM is that the property of such 
materials is not only related to periodic bond topology, which is often 
referred to as long range order, but also tied up with the existence of 
various local structures, which correspond to the chemical short-range 
order (CSRO) [50]. CSRO is widely observed in all kinds of CCEM, 
ranging from alloys [51–55] to ceramics [56–58]. The nature of CSRO is 
essentially the remanent of pair preference as in the case of long range 
ordered structure. As can be derived from Patterson function [50,59], a 
Fourier transformation of the occupancy of the corresponding local 

Fig. 6. (a) Observed CSRO from disordered rocksalt type oxide and oxyfluoride from both SAED and neutron diffraction pair distribution analysis [56]; (b) CSRO and 
local structure analysis from large scale Monte Carlo sampling for local tetrahedron coordination [6]; (c) The percolating amount of Li of different oxides and 
oxyfluorides with different CSRO and local structures [6]; (d) The percolation map at the complete compositional space of Li-Mn-O-F with Mn at + 2/+3/+4 [7]; (e) 
The experimental measured initial capacity which is consistent with the theoretical prediction shown in (d) [7]. 
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structure will lead to the observed diffusive scattering features, which is 
often regarded as the “fingerprint” of CSRO. 

The investigation of CSRO is challenging in both theory and exper-
iment. In experiment, the CSRO features collected from electron, 
neutron diffraction or X-ray diffraction are usually convoluted with in-
formation of both structural feature and corresponding probability, 
while the elements that mixed can also have very similar scattering 
factors [51,52,60]. As a result, the interpretation of characterization 
features will become challenging. On the other hand, theoretical 
modeling of CSRO requires efficient sampling of large configurational 
space [61]. Particularly for CCEM, such a space can be too large to be 
enumerated with DFT calculations [7,8,61]. 

Recently, the emerging of disordered battery electrodes have cata-
lyzed the development of modeling tools and theoretical understanding 
of CSRO in CCEM. As being indicated in Fig. 6(a), difference CSRO 
features have been discovered and reported in cation disordered type of 
oxides and oxyfluorides with a FCC type cation sublattice [56]. Such 
CSRO is proved to be sensitively related to electrochemical performance 
[56] thus enhanced the developments of simulation tools for repro-
ducing that theoretically. The capability of modeling Hamiltonian across 
high dimensional compositional space enables in-depth understanding 
of CSRO structures [7,8,61]. With sparse cluster expansion models that 
can capture high entropy compositional space up to 10 elements 
[8,61–67], we can develop atomistic modelling via Monte Carlo sam-
pling with size equivalent to a few tens to hundreds nanometers 
[6–8,68] and the capability of obtaining converged statistics as shown in 
Fig. 6(b and c) [6]. Such sampling enables various study on ion perco-
lating network as well as the consequential electrochemical perfor-
mance due to CSRO [6–8]. As shown by Fig. 6(d), the percolation map, 
which is essentially the connection of specific local structure that have 
low diffusion barrier can be well captured by Monte Carlo simulations 
[6,7], which lead to consistent predictions of initial capacity of battery, 
shown in Fig. 6(e), when we tailor the CSRO through compositional 
change. 

In addition to CSRO, another emerging concept is that some local 
structures that are loosely bonded with the rest of the crystalline 
framework can also be crucial for energy storage and conversion prop-
erties. Such local structures are widely discussed in the field of hybrid 
organic/inorganic materials [69] and metal organic frameworks [70], as 
in both category of materials we have the existence of molecules that is 
more flexible in terms of rotation and even migration. Such rotational 
degree of freedom can lead to more tunable space of functionality 
[69,70]. Recently, such doping strategy has been applied even in pure 
inorganic crystalline framework, particularly for the application of 
making superionic conductors. The origin of those local behavior is 
usually phrased as “dynamic disorder”, which has been thoroughly 
discussed with respect to the application as superionic Akali metal 
conductors since 1990s (shown by Fig. 7a) [71]. More recently, the role 
of cluster ion has been widely studied as a new route for engineering 
properties related to clean energy applications [71–77]. 

To give a few representative examples, it has been proposed in many 
recent works that a highly rotating polyanion framework can lead to 
enhanced ion diffusion in materials. There has been many discussions 
concentrating on whether the “paddle wheel” mechanism will poten-
tially enhance ionic conductivity [71–78]. However, it is worth noting 
that it is not easy to have solid evidence about the existence or absence 
of paddle wheel effect, from both computation and characterization. The 
challenge major comes from the fact that quantifying the paddle wheel 
mechanism requires the separation of correlation between ion diffusion 
and polyanion rotation at both time and spatial scale. However, in both 
simulation and experiment, this is not easy and requires careful setup. 
Moreover, it is worth noting that the paddle wheel effect of cluster ion is 
sometimes decoupled with diffusive hopping as they are in different 
time scale. Taking Li6PS5(BH4) as an example, the rotating of cluster ion 
(BH4)- is very pronounced as being shown by the trajectory in Fig. 7(b), 
which is visualized from 10 ps of AIMD simulations. However, when 
decompose such rotation into more elementary bond bending and bond 
stretching mode as shown in Fig. 7(c), it has been found that the 

Fig. 7. (a) Demonstration of the dynamic disorder of nitrate ion in H-NaNO3 [71]; (b) AIMD simulated trajectory of dynamic disorder of (BH4)- in Li6PS5(BH4); (c) 
Decomposition of the rotational motion into bond bending and bond stretching; (d) The dynamic correlation between Li motion with (BH4)- and (PS4)3-. 
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enhanced ionic conductivity is more related to the weak interaction 
between (BH4)- and the rest of the framework rather than paddle wheel 
effect [78,79]. According to the trajectory analysis as shown in Fig. 7(d), 
the weak interaction between (BH4)- and the rest of the framework en-
ables less residual time between (BH4)- and the framework. The absence 
of paddle wheel mechanism in this case is simply because the rotation 
degree of freedom has much higher frequency compared with the ion 
hopping attempt frequency. Moreover, freezing the rotating ion could 
cause troubles of analyzing such phenomenon as both the rotation de-
gree of freedom and vibrational degree of freedom are frozen with such 
set up. Therefore, the lowering of ionic conductivity can be not identi-
fied as the losing of paddle wheel effect. In conclusion, novel ways of 
performing selective dynamic simulation are urged to decouple the 
multiple dynamic process in such phenomenon. 

5. Machine learning and beyond 

Benefiting from the Moore’s law, the computational capability has 
scaled exponentially compared with a few decades ago. Even with 
quantum chemistry level of efficiency, it is relative trivial to compute 
hundreds or thousands of materials from a few weeks to a few months. 
As a result of that, we observe the rapid growth of materials genome 
materials database in the past decades, which can be represented by 
Materials Project [80], OQMD [81], A-flow [82] in US, as well as 
NOMAD [83] and MARVEL [84] in Europe. The existence and rapid 
expansion of materials dataset thus catalyze the development of data 
science and machine learning protocols. Particularly for CCEMs, the 
major challenging for machine learning is to (1) Develop effective 
encoding algorithms that can capture the energy fluctuation from subtle 
structural and compositional change of CCEMs; (2) Harvest and estab-
lish non-biased dataset to overcome the scarcity of CCEMs data in cur-
rent generic materials genome database. For addressing both 
challenging, there is very little work so far focusing on CCEMs. However, 
there are indeed plausible development from other field of computa-
tional materials science that can potentially benefit the machine 
learning of CCEMs. Such emerging efforts will be summarized in the 
following paragraphs. 

For encoding algorithms, it has been shown that compositional 
models that lack structural information will fail greatly in predicting 
decomposition pathway as it can only capture the average chemical 
potential at certain composition [85]. Such estimation will perform 
badly at a compositional space with rich structural evolution due to 
subtle compositional change or pure polymorphic transition. Such 
benchmark has been demonstrated by Bartel et al. [83], as shown in 
Fig. 8 (a). Roost is the best compositional model among six types of 
composition based convoluted neural network model benchmarked. On 
the other hand, the crystal graph convolutional neural network [85,87], 
which captures not only compositional, but also structural information 
of crystalline materials, turn out to be much better at capturing 
decomposition energy than Roost, as shown in Fig. 8(a). More specif-
ically, CGCNN captures the decomposition energy much better 
compared with Roost not only for lower MAE, but also the capability of 
getting rid of predictions with huge discrepancy of predicted energy 
from the DFT computed energy [85]. Therefore, it has been confirmed 
that with consideration of structural features, the prediction of phase 
decomposition can be greatly improved. However, it is also worth 
mentioning that the state-of-art MAE or RMSE of such global energy 
models is around 30–50 meV/atom in general [85,87,88], which is 
comparable with the configurational energy range of CCEM with 
different atomic configurations. Therefore, it remains questionable that 
such model will necessarily be useful when discussing about phase 
transformation across different disordering states. To make further ad-
vances in utilizing machine learning energy models for CCEMs, the 
intrinsic limitation of CNN based methods need to be better understood 
and benchmarked with customized dataset, rather than the dataset from 
above-mentioned generic database, which typically have scarce data of 
CCEMs. 

Beyond the idea of machine learning, there are also other scientific 
challenges to solve rather than prediction-driven data science. One 
important challenge is data assimilation and processing. There are 
majorly two challenges in this theme: (a) Harvesting data from scientific 
literature; b) Combine and use data with different source and fidelity. 
Natural language processing (NLP) has emerged in the past few years 
that harvesting data from millions of scientific literatures 

Fig. 8. (a) Comparison between crystal graph convolutional neural network (CGCCN) and the best composition-based neural network model among 6 benchmarked 
models [85]; (b) Natural language processing (NLP) pipeline that lead to the establishment of SynTERRA inorganic synthesis database [86]. 
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[36,86,89–92]. With such experimental database from NLP, while the 
data assimilation pipeline demonstrated in Fig. 8(b), the predictive 
synthesis can be greatly enhanced with experimental input [86]. 
Moreover, the existence of data with different source, accuracy and 
references also introduce difficulty for data analysis. Transfer learning 
techniques will be suitable for blending data with different fidelity 
[93,94], moreover, it helps the establishment of pre-trained machine 
learning model that is capable of accelerating the materials discovery 
and prediction [88]. 

6. Outlook and summary 

The realm of Compositionally Complex Energy Materials (CCEMs) 
holds immense promise and potential, especially in light of the sub-
stantial material requirements to achieve carbon neutrality. Drawing 
upon the outlined prospects, there are two significant impending chal-
lenges within the domain of data driven CCEM design. Firstly, amidst 
the rapid evolution of materials genome databases, numerous databases 
now contain millions of distinct materials [80–82,84]. However, it is 
worth mentioning that the known materials are still very sparse 
compared with the global space of materials [95]. This holds particu-
larly true for CCEMs, where current state-of-the-art material genome 
databases exhibit limited or even non-existent data from both theoret-
ical predictions and experimental validations. This underscores the 
pressing need for the development of robust data infrastructure along-
side automated data mining workflows. 

Moreover, the exploration territory for CCEMs is vast, encompassing 
not only the chemical space but also the synthesis space. To expedite 
progress, the advancement of tools facilitating swift iterations between 
computational predictions and experimental validations becomes 
paramount. The amalgamation of robotic synthesis techniques and 
algorithmic decision-making frameworks emerges as a pivotal step to-
wards closing the loop on the autonomous discovery and exploration of 
CCEMs [96]. 

In conjunction with the challenges, a multitude of unexplored op-
portunities await discovery within the realm of CCEMs. Specifically, one 
notable advantage of CCEMs originates from the diverse local bonding 
environments, which has the potential to catalyze numerous applica-
tions extending beyond the scope of energy storage and catalysts, as 
highlighted in this review. To fully unlock this potential, meticulous 
design and robust justifications will be essential to extend this concept to 
a broader spectrum of energy storage and conversion applications 
[14,15]. Furthermore, the distinct property profile of CCEMs, derived 
largely from the distribution of local structures, offers the exciting 
prospect of diminishing reliance on critical metals. This potential 
avenue holds promise for alleviating concerns surrounding critical metal 
supply during the electrification process. Furthermore, this inherent 
capability may spur the development of predictive synthesis theories 
tailored specifically for CCEMs, while also driving the innovation of 
novel experimental setups that enable rapid synthesis and expedited 
iteration cycles. 
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