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ABSTRACT: Developing transferable machine learning models is trending in
data-driven materials research. However, how to apply such models to a specific
research domain remains unclear. In this work, we choose high-entropy materials
as a platform with a specialized data set containing 145,323 DFT-relaxed
materials. This data set is used to explore the role of domain-specific knowledge
in training effective models. Our tests with three representative graph neural
network architectures indicate the model complexity has much smaller influence
on performance than the data itself. Specifically, the consideration of low-energy
atomic ordering, structures with diverse elemental coverage, and high-order
interactions significantly influences the model performance. We also find that
domain knowledge-driven sampling can greatly enhance unsupervised learning
techniques. This research highlights that developing specialized data sets is more beneficial than further complicating deep
learning architectures. Additionally, physics-inspired sampling algorithms are crucially needed for better machine learning
models for a specific materials research domain.

Pretrained foundation models using large data sets are
becoming central to data-driven materials research.
Recent work shows that graph neural networks

(GNNs) trained on generic materials data sets can reach or
exceed chemical accuracy (e.g., 1 kcal/mol or 43.36 meV/
atom).1−6 Despite these significant advancements, the next key
challenge is adapting these models to specialized domains. In
this study, we addressed this challenge with systematic
benchmark on a comprehensive specialized7−9 data set of
18,810 HE-DRX10 and 126,513 HEA compositions,11,12

comparable in size to leading generic data sets2,13−15 but
focused exclusively on high-entropy materials. Benchmarking
three popular GNNs revealed that model complexity has a
limited impact on prediction accuracy. The uniformly low
mean absolute errors (MAEs) suggest that current GNNs are
already sufficiently good at capturing both structural and
compositional information.16 Instead, domain knowledge (e.g.,
ionic ordering, phase behavior, and high-dimensional inter-
actions) plays a much larger role in improving the perform-
ance. Additionally, our results show that training data quality
matters more than quantity: informed sampling based on
physical insight outperforms unsupervised approaches like
PCA17 or UMAP.18 These findings highlight that effective
domain adaptation depends more on embedding material

knowledge and smart data selection than on increasing model
complexity.

■ IMPACT OF DATA SIZE AND MODEL VARIATIONS
Three representative GNN models, CGCNN,6 M3GNet,4 and
CHGNet,5 are evaluated on both HE-DRX and HEA data sets.
CGCNN is the first crystal graph-based convolutional model;6

M3GNet introduces the first universal interatomic potential
trained on Materials Project data;4 and CHGNet represents a
leading universal GNN-based force field.5 These models
effectively represent many other existing efforts. To assess
performance across data size, we performed 70%−15%−15%
train−validation−test splits using 1%, 2%, 5%, 10%, 20%, 50%,
and 100% of each data set, with five independent runs per size
to ensure robustness. All data used DFT-relaxed structures,
with Ehull values as target property.19−24 Results are shown in
Figure 1 and Tables S1−S8, with green dots denoting average
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MAE and shaded areas representing variation. A dummy
model predicting the data set mean is shown as a black dashed
line (Figure S13). We also tested pretrained formation energy
(Eform) models, M3GNet-MP-2018.6.1-Eform4 and CHGNet
0.3.0,5 on our data sets. Their performance is shown as blue
and green dashed lines (Figures S14−S15). Although both Ehull
and Eform represent relative energies,4,5 they are still
fundamentally distinct. Green dashed lines include a force-
centering shift (y = x) of model prediction as suggested by
Deng et al.,25 while the blue lines reflect direct use of model.
To mitigate systematic offsets due to data set bias, we applied
the “shifted model” approach, which is considered the upper-
bound performance for pretrained models.

It can be seen from Figure 1 that for all GNN models,
performance differences diminish with sufficient data (e.g.,
>1000 DFT-relaxed structures). On the HE-DRX data set,
CGCNN, M3GNet, and CHGNet (e and em models) achieve
MAEs of 1.95, 2.45, 2.02, and 2.07 meV/atom, respectively; for
HEA, the MAEs are 7.62, 6.75, 4.98, and 7.40 meV/atom. Such
values are much lower than the direct prediction with
pretrained formation energy model (Figures S14−S15).
Despite their differing architectural complexities, CGCNN is

much simpler without explicit three-body interactions. Their
comparable performance suggests that for high-entropy
materials, model architecture matters less once enough data
is available. Current deep learning models are already
sophisticated enough for specialized materials discovery tasks.
Even though building a very complex generic model will
certainly have other application scenarios, if one only needs to
understand the specific design space of materials, further
complicating the ML model on generic data sets will not be as
beneficial as building a specialized data set and more efficient
sampling.

A preliminary fine-tuning from pretrained M3GNet-MP-
2018.6.1-Eform4 using up to 10% of specialized data sets was
conducted to predict Eform and derive Ehull, as shown in Figure
S16. The fine-tuned model showed improved Ehull predictions,
confirming the benefits of fine-tuning. However, to further
push the MAE below 10 meV/atom for both HE-DRX and
HEA, fine-tuning still requires at least a few thousand data
points, e.g., 2000 samples for HE-DRX and 7000 for HEA,
while the fine-tuned model shows a similar MAE to the
retrained model when trained with this level of data size. These
observations suggest that while fine-tuning a pretrained generic
model can effectively capture general trends within a specific
compositional space, it offers limited benefit in minimizing
prediction error. In such cases, increasing the amount of high-
quality, domain-specific training data remains the most
effective strategy for improving the accuracy. Motivated by
these findings, we designed three controlled tasks to system-
atically investigate how domain knowledge, such as atomic
ordering, structural variations, and higher-order interactions,
can be leveraged to further enhance GNN-based materials
predictions.

■ IMPACT OF ATOMIC ORDERING
Understanding and distinguishing different ordering states are
crucial in high-entropy materials research. The HE-DRX
system, with its rich variety of ordering states,20,26−29 is ideal
for testing machine learning models’ ability to capture local
ordering. We enumerated the compositional space for two
classic HE-DRX ordering types, illustrated in Figure 2(a). The
ESGS notation, shown by the equation at the top of each
schematic, stands for an electrostatic ground state, which is
obtained by minimizing the Ewald summation of the structure.
Conversely, the SQS structures are generated by minimizing
the cluster occupancy difference to approach the random
limit.30 Both structural types are observed in HE-DRX and
other ionic systems,31 correlating to short-range ordered states
and fully random states, respectively.

With the selected data set, the machine learning training was
designed by splitting the data set in different ways. First, the
data set was divided into ESGS-only and SQS-only groups. As
shown in Figure 2(b)−(c), we performed 82−18 train-
validation splits on ESGS structures and tested these models
on SQS structures, denoted as ESGS→SQS. Conversely, SQS
structures were used for training and validation, with testing on
ESGS structures (SQS→ESGS; Figure 2(b) and Figure 2(d)).
Across all models, MAEs were consistently lower for ESGS→
SQS, with CGCNN showing the lowest MAE value (Figure
2(c)−(d)). The contrast between Figure 2(c) and Figure 2(d)
underscores the importance of domain knowledge in model
training. A dummy model predicting ESGS energies by the
average achieved a lower MAE (24.2 meV/atom, Supporting
Information Figure S17) than all GNN models for the SQS→

Figure 1. Data set and model performance with partial data set
variations. (a) Schematic of the HE-DRX data set and HEA data
set and types of structures included. SQS stands for special quasi-
random structures, and ESGS stands for electrostatic ground
states. (b) Performance of all three models on HE-DRX data set
with 0.70−0.15−0.15 splitting in terms of predicting Ehull. (c)
Performance of all three models on HEA data set with 0.70−0.15−
0.15 splitting in terms of predicting Ehull. The black dashed lines
are a reference of a dummy model that uses the average of a data
set to predict all data. The blue and green dashed lines are
predicting performance using pretrained models from M3GNet4

and CHGNet5 that were trained based on the Materials Project
data set. The blue dashed line indicates the performance by
directly applying the corresponding model, while the green dashed
line is the performance after enforcing the centering of all data on
y = x. For CHGNet, the training has been done both without
(denoted as e) and with (denoted as em) magnetic moments. The
shaded area indicates the error from five independent trainings
with different random seeds of selecting samples from our
complete data set.
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ESGS task, highlighting the risk of relying solely on SQS
structures. Although SQS structures are often used in ML
studies of high-entropy materials,32−37 our results suggest that
incorporating ionic ordering information (e.g., ESGS) is
critical.20,38,39 To further validate this, we created another
data set combining half ESGS and half SQS structures, with the
same total size as the earlier splits. Testing was done on the
remaining unseen structures. As shown in Figure 2(e)−(g),
including both ESGS and SQS significantly reduced MAEs

across all models. Additional parity plots are provided in
Supporting Information Figures S18−S20.

Figure 2 demonstrates that model performance heavily
depends on the sampling of local orderings, independent of the
architecture. Training on randomly selected or biased
structures, even with large data size, can be risky. We
hypothesize that ESGS structures offer broader coordination
diversity due to charge state effects, whereas SQS structures,
reflecting random stoichiometry, offer less local variation as

Figure 2. Predicted performance across different atomic orderings. (a) Schematic of how electrostatic ground state (ESGS) structure and
special quasi random structure (SQS) are generated. (b) The performance of different GNN models in terms of using one order to predict
the other order. The Ehull values are used as labels for training. (c, d) The parity plots of all test data sets for the best model (CGCNN) for
this task. (e) The performance of different GNN models in terms of using mixed ESGS and SQS as the training data to predict SQS or ESGS
structures. (f, g) The parity plots of all test data sets for the best model (CHGNet (e)) for this task.

Figure 3. Predicted performance across different crystal structures. (a) Parity plots of all test data sets from the best model (CHGNet, e) for
four types of tasks. The specific task is labeled in each panel. The notation “Strat” indicates that stratified sampling has been performed to
generate the same data size as the case of FCC+HCP→BCC. (b) The performance of all four models for all four tasks. (c) The distribution
of different training and testing data sets as a function of τ. (d) Illustration of the phase transition appears after relaxation for structures with
different τ.
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they do not depend on charge states of ions. Additionally,
ESGS structures are often closer to ground states:31 95.18% of
ESGS structures have lower energy than corresponding SQS
structures (Supporting Information Figure S21). Including
such structures thus better captures chemical bonding
variations40 and reduces systematic errors.25

■ IMPACT OF CRYSTAL STRUCTURAL VARIATION
Beyond ionic ordering, another major challenge is capturing
variation across different crystal structures. To test model
transferability across structures, we designed four training
schemes (Figure 3(a)). In the first three tasks, models were
trained on two structure types (e.g., BCC + FCC) to predict
the third (e.g., HCP). Data sizes were balanced by selecting
equal numbers of BCC, FCC, and HCP samples with an 82−
18 random train-validation split. Multiple random seeds
ensured robust evaluation, and detailed results are shown in
Supporting Information Table S9. Testing performance, where
the model predicts unseen structure types, is summarized in
Figure 3(a), with example parity plots for the best model
(CHGNet, energy-only) and additional models shown in
Supporting Information Figures S22−S24. Notably, models
trained on FCC and HCP data perform poorly when
predicting BCC structures, yielding a high MAE of 78.5
meV/atom. In contrast, models trained on BCC+HCP to
predict FCC and BCC+FCC to predict HCP achieved much
lower MAEs of 14.5 and 15.1 meV/atom, respectively. This
sharp contrast suggests fundamental differences in the
complexity or the learnability of the three structure types.

The divergent behaviors observed in Figure 3(a)−(b)
highlight that even large data sets (>10,000 data points)
with full elemental coverage do not guarantee useful models.
To investigate the physical origin of this divergence, we plotted
training and testing data sets against our previously established
d e s c r i p t o r τ , 1 1 d e fi n e d a s

VEC VEC VEC X( ) log( )std avg3= × + + , w h e r e VEC ,
VECstd, and Xavg represent average valence electron concen-
tration, its standard deviation, and average electronegativity,
respectively. As shown in Figure 3(c), BCC structures exhibit a

distinct τ distribution compared to those of FCC and HCP,
reflecting fundamental differences in electronic properties. This
divergence stems from mechanical instabilities: many high-τ
HEAs initialized as BCC relax into FCC, HCP, or amorphous
structures, as summarized in Figure 3(d) and our prior work.11

Consequently, BCC structures lack high-τ compositions, while
FCC and HCP structures span a broader τ range except at very
low τ, where they can relax into BCC. This data set artifact
explains the poor performance when using only FCC and HCP
data to predict BCC structures. Including BCC structures
ensures τ-space coverage and significantly improves model
performance. This is confirmed by the fourth task in Figure
3(a), where random sampling across all three structure types
yields a low MAE of 5.7 meV/atom when predicting unseen
BCC data. Additionally, to determine the amount of BCC data
needed for accurate BCC predictions, we incrementally added
varying fractions of BCC compounds to the FCC and HCP
training set and evaluated the model on the remaining BCC.
As shown in Figure S25, we found that including
approximately 4,500 BCC compounds will reduce the MAE
to around 10 meV/atom. This type of analysis�searching for
the amount of data needed for efficient modeling�has also
been explored in other systems.41

■ IMPACT OF HIGHER-ORDER INTERACTION
Beyond structural phases, another critical challenge in high-
entropy materials is the prediction of higher-dimensional
chemical spaces. To assess this, we trained models on HEA
data containing 1, 2, or 3 metals (82−18 train−validation split)
and tested them on 4-metal data. This was compared to
training on 1−4 metal data and testing on 5-metal data (top
right panel of Figure 4(a)). The best model, CHGNet (em), is
shown in the top left panel of Figure 4(a). Training on 1−4
metal data yields significantly better performance (MAE: 11.7
meV/atom) than training on 1−3 metal data only (MAE: 21.9
meV/atom). However, the four-metal data set is much larger
(61,425 samples) compared to the combined 1M+2M+3 M
data set (11,046 samples). To control for training size, we
performed stratified sampling to match data set sizes and then
tested on the remaining 4 or 5 M data. The results are shown

Figure 4. Predicted performance for higher-dimensional interactions. (a) Parity plots of all test data sets from the best model (CHGNet
(em)) for four types of tasks. The specific task is labeled in each panel. The notation “Strat” indicates that stratified sampling has been
performed to generate the same data size as the case of 1M,2M,3M→4M. (b) The performance of all four models for all four tasks. (c) The
illustration of selected cluster interactions in 1M,2M,3M (left panel) and representative unique cluster interactions in 4M MPEAs. Circles
with different colors indicate different species.
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in the bottom two panels of Figure 4(a), with performance
metrics for all four ML models summarized in Figure 4(b) and
Supporting Information Figures S26−S28 and Tables S10−
S11. Across all tasks, model performances are very similar,
reinforcing the key role of data dimensionality and sampling.

Comparison of Strat(1M−4M) → 4M and Strat(1M−4M)
→ 5M results (bottom panels, Figure 4a) shows that including
4M data significantly improves model accuracy for 4M
predictions, reducing the MAE from 21.9 to 11.9 meV/atom.
For 5M predictions, the MAE reaches 14.8 meV/atom,
comparable to models trained on the full 1M−4M data set.
These findings highlight the value of incorporating high-
dimensional data to improve predictive performance. As
illustrated in Figure 4c, 4M data sets introduce four-species
interactions absent in lower-dimensional data, underscoring
the benefit of domain knowledge from higher-order
interactions in enhancing model capability.

■ SAMPLING STRATEGY
The constantly observed similar performance among Figures
1−4 further confirms the fact that the model complexity42

makes little difference compared to the training data. Instead,
effective sampling strategies are more critical for training a
specialized ML model for a particular chemical space. Recent
studies17,18,43 have shown promising advances in using
unsupervised learning to enhance data selection, but efficient
sampling remains an overlooked challenge, as further
illustrated by Figure 5. As shown in Figure 5, we compared
physically inspired data clustering with two widely used
unsupervised learning-based methods: principal component

analysis (PCA)17 and Uniform Manifold Approximation and
Projection (UMAP).18 PCA and UMAP have been used to
cluster materials space to enhance ML sampling, which are
benchmarked against domain knowledge-driven clustering,
using three key criteria: (i) ordering (ESGS vs SQS), (ii)
structural type (BCC, FCC, HCP), and (iii) compositional
dimensionality. For PCA and UMAP, standard compositional
and structural features were used: structural descriptors involve
packing fraction, Ewald energy,44 maximum packing effi-
ciency,45 short-range order,46 XRD diffraction, radial distribu-
tion function, structural complexity47) while compositional
features are adopted from Matminer48 (details in computa-
tional method and Figures S29−S30). As a result, the
featurization process generates 351 structural features for
HE-DRX data set and 362 structural features for HEA data set,
while 187 compositional features are generated for both data
sets.

Figure 5(a)−(c) shows that PCA fails to form meaningful
clusters, even when important physical features like Ewald
summation, valence electron concentration, and element count
are included. This failure stems from PCA’s linear nature,
which struggles with intrinsically nonlinear relationships, as
also noted by Li et al.18 In contrast, UMAP, a nonlinear
method, shows improved clustering, particularly separating
ESGS and SQS structures effectively (Figure 5(d), Figure
S31). However, UMAP still has its limitations. As shown in
Figure 5(e), while it distinguishes BCC, FCC, and HCP
domains, it does not capture subtler relationships explaining
why FCC+HCP→BCC predictions outperform others. UMAP
also fails to cluster structures based on the number of elements

Figure 5. Unsupervised and domain knowledge sampling strategy. (a−c) Principal component analysis (PCA) among compositional and
structural features from Matminer48 to distinguish (a) ESGS structures with SQS structures; (b) BCC, FCC, and HCP structures; and (c)
structures with different metals. (d−f) Uniform Manifold Approximation and Projection (UMAP) among compositional and structural
features from Matminer48 to distinguish (d) ESGS structures with SQS structures; (e) BCC, FCC, and HCP structures; and (f) structures
with different metals. (g−i) Physics-inspired clustering of data to distinguish (g) ESGS structures with SQS structures; (h) BCC, FCC, and
HCP structures; and (i) structures with different numbers of metals.

ACS Materials Letters www.acsmaterialsletters.org Letter

https://doi.org/10.1021/acsmaterialslett.5c00726
ACS Materials Lett. 2025, 7, 2708−2715

2712

https://pubs.acs.org/doi/suppl/10.1021/acsmaterialslett.5c00726/suppl_file/tz5c00726_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmaterialslett.5c00726/suppl_file/tz5c00726_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmaterialslett.5c00726/suppl_file/tz5c00726_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmaterialslett.5c00726/suppl_file/tz5c00726_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmaterialslett.5c00726/suppl_file/tz5c00726_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmaterialslett.5c00726/suppl_file/tz5c00726_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsmaterialslett.5c00726?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmaterialslett.5c00726?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmaterialslett.5c00726?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmaterialslett.5c00726?fig=fig5&ref=pdf
www.acsmaterialsletters.org?ref=pdf
https://doi.org/10.1021/acsmaterialslett.5c00726?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(Figure 5(f)). In comparison, domain-knowledge-based
clustering (Figure 5(g)−(i)) effectively organizes structures
by ordering, phase type, and compositional dimensionality,
enabling more efficient clustering of the important physical
factors pointed out in Figures 2−4.

Overall, we present a comprehensive investigation showing
that for high-entropy materials, specialized data set design and
domain knowledge in sampling are far more critical than model
complexity. This work lays a foundation for more effective
machine learning strategies in both high-entropy and broader
materials science research.

■ COMPUTATIONAL METHODS
All electronic structure calculations were performed using
Vienna Ab-initio Simulation Package (VASP)49−51 with PBE
functional52 and PAW pseudopotential.53,54 A reciprocal space
discretization of 25 k-points per Å−1 was used to sample the
Brillouin zone.55 The kinetic energy cutoff is 520 eV. The
Methfessel-Paxton scheme is used to smooth the partial
occupancies for each orbital.56 The smearing width is 0.2 eV.
The convergence criteria for the self-consistent field (SCF)
step are 10−5 eV. Geometric optimizations were executed until
the force on each atom is less than 0.05 eV/Å. The details of
our DFT data set are in the Supporting Information. For all
three ML architectures used (e.g., CGCNN, M3GNET, and
CHGNet), a two-body cutoff radius of 8 Å and a three-body
cutoff of 4 Å were applied during graph construction. Details
are in Supporting Information (Detailed Computational
Methods and Figures S3−S12).
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